Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Public Policy ; 51(4): 680-691, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39035203

RESUMO

In response to calls for public engagement on human genome editing (HGE), which intensified after the 2018 He Jiankui scandal that resulted in the implantation of genetically modified embryos, we detail an anticipatory approach to the governance of HGE. By soliciting multidisciplinary experts' input on the drivers and uncertainties of HGE development, we developed a set of plausible future scenarios to ascertain publics values-specifically, their hopes and concerns regarding the novel technology and its applications. In turn, we gathered a subset of multidisciplinary experts to propose governance recommendations for HGE that incorporate identified publics' values. These recommendations include: (1) continued participatory public engagement; (2) international harmonization and transparency of multiple governance levers such as professional and scientific societies, funders, and regulators; and (3) development of a formal whistleblower framework.

2.
Nature ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019069

RESUMO

Nineteen genetic therapies have been approved by the U.S. Food and Drug Administration (FDA) to date, a number that now includes the first CRISPR genome editing therapy for sickle cell disease, CASGEVY (exagamglogene autotemcel). This extraordinary milestone is widely celebrated because of the promise for future genome editing treatments of previously intractable genetic disorders and cancers. At the same time, such genetic therapies are the most expensive drugs on the market, with list prices exceeding $4 million per patient. Although all approved cell and gene therapies trace their origins to academic or government research institutions, reliance on for-profit pharmaceutical companies for subsequent development and commercialization results in prices that prioritize recouping investments, paying for candidate product failures, and meeting investor and shareholder expectations. To increase affordability and access, sustainable discovery-to-market alternatives are needed that address system-wide deficiencies. Here, we present recommendations of a multi-disciplinary task force assembled to chart such a path. We describe a pricing structure that, once implemented, could reduce per-patient cost tenfold and propose a business model that distributes responsibilities while leveraging diverse funding sources. We also outline how academic licensing provisions, manufacturing innovation and supportive regulations can reduce cost and enable broader patient treatment.

4.
Sci Transl Med ; 9(404)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835516

RESUMO

Alterations in gene dosage due to copy number variation are associated with autism spectrum disorder, intellectual disability (ID), and other psychiatric disorders. The nervous system is so acutely sensitive to the dose of methyl-CpG-binding protein 2 (MeCP2) that even a twofold change in MeCP2 protein-either increased or decreased-results in distinct disorders with overlapping features including ID, autistic behavior, and severe motor dysfunction. Rett syndrome is caused by loss-of-function mutations in MECP2, whereas duplications spanning the MECP2 locus result in MECP2 duplication syndrome (MDS), which accounts for ~1% of X-linked ID. Despite evidence from mouse models that restoring MeCP2 can reverse the course of disease, there are currently no U.S. Food and Drug Administration-approved therapies available to clinically modulate MeCP2 abundance. We used a forward genetic screen against all known human kinases and phosphatases to identify druggable regulators of MeCP2 stability. Two putative modulators of MeCP2, HIPK2 (homeodomain-interacting protein kinase 2) and PP2A (protein phosphatase 2A), were validated as stabilizers of MeCP2 in vivo. Further, pharmacological inhibition of PP2A in vivo reduced MeCP2 in the nervous system and rescued both overexpression and motor abnormalities in a mouse model of MDS. Our findings reveal potential therapeutic targets for treating disorders of altered MECP2 dosage.


Assuntos
Testes Genéticos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Interferência de RNA , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Reprodutibilidade dos Testes
5.
Neuron ; 86(2): 403-16, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25864637

RESUMO

The hypothalamus integrates information required for the production of a variety of innate behaviors such as feeding, mating, aggression, and predator avoidance. Despite an extensive knowledge of hypothalamic function, how embryonic genetic programs specify circuits that regulate these behaviors remains unknown. Here, we find that in the hypothalamus the developmentally regulated homeodomain-containing transcription factor Dbx1 is required for the generation of specific subclasses of neurons within the lateral hypothalamic area/zona incerta (LH) and the arcuate (Arc) nucleus. Consistent with this specific developmental role, Dbx1 hypothalamic-specific conditional-knockout mice display attenuated responses to predator odor and feeding stressors but do not display deficits in other innate behaviors such as mating or conspecific aggression. Thus, activity of a single developmentally regulated gene, Dbx1, is a shared requirement for the specification of hypothalamic nuclei governing a subset of innate behaviors. VIDEO ABSTRACT.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Homeodomínio/genética , Hipotálamo/embriologia , Hipotálamo/fisiologia , Instinto , Animais , Padronização Corporal/genética , Comportamento Alimentar/fisiologia , Feminino , Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Hipotálamo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Orexinas
6.
J Biol Chem ; 288(29): 21341-21350, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23740247

RESUMO

Alpha4 (α4) is a key regulator of protein phosphatase 2A (PP2A) and mTOR in steps essential for cell-cycle progression. α4 forms a complex with PP2A and MID1, a microtubule-associated ubiquitin E3 ligase that facilitates MID1-dependent regulation of PP2A and the dephosphorylation of MID1 by PP2A. Ectopic overexpression of α4 is associated with hepatocellular carcinomas, breast cancer, and invasive adenocarcinomas. Here, we provide data suggesting that α4 is regulated by ubiquitin-dependent degradation mediated by MID1. In cells stably expressing a dominant-negative form of MID1, significantly elevated levels of α4 were observed. Treatment of cells with the specific proteasome inhibitor, lactacystin, resulted in a 3-fold increase in α4 in control cells and a similar level in mutant cells. Using in vitro assays, individual MID1 E3 domains facilitated monoubiquitination of α4, whereas full-length MID1 as well as RING-Bbox1 and RING-Bbox1-Bbox2 constructs catalyzed its polyubiquitination. In a novel non-biased functional screen, we identified a leucine to glutamine substitution at position 146 within Bbox1 that abolished MID1-α4 interaction and the subsequent polyubiquitination of α4, indicating that direct binding to Bbox1 was necessary for the polyubiquitination of α4. The mutant had little impact on the RING E3 ligase functionality of MID1. Mass spectrometry data confirmed Western blot analysis that ubiquitination of α4 occurs only within the last 105 amino acids. These novel findings identify a new role for MID1 and a mechanism of regulation of α4 that is likely to impact the stability and activity level of PP2Ac.


Assuntos
Biocatálise , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Cães , Humanos , Leucina/metabolismo , Células Madin Darby de Rim Canino , Modelos Moleculares , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA