Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38667291

RESUMO

Both Hedgehog and androgen signaling pathways are known to promote myelin regeneration in the central nervous system. Remarkably, the combined administration of agonists of each pathway revealed their functional cooperation towards higher regeneration in demyelination models in males. Since multiple sclerosis, the most common demyelinating disease, predominates in women, and androgen effects were reported to diverge according to sex, it seemed essential to assess the existence of such cooperation in females. Here, we developed an intranasal formulation containing the Hedgehog signaling agonist SAG, either alone or in combination with testosterone. We show that SAG promotes myelin regeneration and presumably a pro-regenerative phenotype of microglia, thus mimicking the effects previously observed in males. However, unlike in males, the combined molecules failed to cooperate in the demyelinated females, as shown by the level of functional improvement observed. Consistent with this observation, SAG administered in the absence of testosterone amplified peripheral inflammation by presumably activating NK cells and thus counteracting a testosterone-induced reduction in Th17 cells when the molecules were combined. Altogether, the data uncover a sex-dependent effect of the Hedgehog signaling agonist SAG on the peripheral innate immune system that conditions its ability to cooperate or not with androgens in the context of demyelination.


Assuntos
Doenças Desmielinizantes , Testosterona , Animais , Feminino , Masculino , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/tratamento farmacológico , Camundongos , Testosterona/farmacologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/agonistas , Camundongos Endogâmicos C57BL , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/agonistas , Bainha de Mielina/metabolismo , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Caracteres Sexuais
2.
Nat Commun ; 14(1): 1592, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949062

RESUMO

Neuroprotective, anti-inflammatory, and remyelinating properties of androgens are well-characterized in demyelinated male mice and men suffering from multiple sclerosis. However, androgen effects mediated by the androgen receptor (AR), have been only poorly studied in females who make low androgen levels. Here, we show a predominant microglial AR expression in demyelinated lesions from female mice and women with multiple sclerosis, but virtually undetectable AR expression in lesions from male animals and men with multiple sclerosis. In female mice, androgens and estrogens act in a synergistic way while androgens drive microglia response towards regeneration. Transcriptomic comparisons of demyelinated mouse spinal cords indicate that, regardless of the sex, androgens up-regulate genes related to neuronal function integrity and myelin production. Depending on the sex, androgens down-regulate genes related to the immune system in females and lipid catabolism in males. Thus, androgens are required for proper myelin regeneration in females and therapeutic approaches of demyelinating diseases need to consider male-female differences.


Assuntos
Androgênios , Esclerose Múltipla , Animais , Camundongos , Feminino , Masculino , Modelos Animais de Doenças , Bainha de Mielina/fisiologia , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Neurônios/patologia
3.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810425

RESUMO

Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Doenças Desmielinizantes/fisiopatologia , Oligodendroglia/citologia , Animais , Astrócitos/citologia , Axônios/metabolismo , Morte Celular , Linhagem da Célula , Proliferação de Células , Proteínas de Ligação a DNA/química , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Neurônios Motores/metabolismo , Bainha de Mielina/metabolismo , Neuroglia/metabolismo , Oxigênio/química , Prosencéfalo/metabolismo , Ratos , Medula Espinal/metabolismo , Superóxido Dismutase-1/metabolismo
4.
Glia ; 69(6): 1369-1392, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33484204

RESUMO

Hedgehog morphogens control fundamental cellular processes during tissue development and regeneration. In the central nervous system (CNS), Hedgehog signaling has been implicated in oligodendrocyte and myelin production, where it functions in a concerted manner with other pathways. Since androgen receptor (AR) plays a key role in establishing the sexual phenotype of myelin during development and is required for spontaneous myelin regeneration in the adult CNS, we hypothesized the existence of a possible coordination between Hedgehog and androgen signals in oligodendrocyte and myelin production. Here, we report complementary activities of both pathways during early postnatal oligodendrogenesis further revealing that persistent Hedgehog signaling activation impedes myelin production. The data also uncover prominent pro-myelinating activity of testosterone and involvement of AR in the control of neural stem cell commitment toward the oligodendroglial lineage. In the context of CNS demyelination, we provide evidence for the functional cooperation of the pathways leading to acceleration of myelin regeneration that might be related to their respective role on microglial and astroglial responses, higher preservation of axonal integrity, lower neuroinflammation, and functional improvement of animals in an immune model of CNS demyelination. Strong decreases of deleterious cytokines in the CNS (GM-CSF, TNF-α, IL-17A) and spleen (IL-2, IFN-γ) stand as unique features of the combined drugs while the potent therapeutic activity of testosterone on peripheral immune cells contributes to increase tolerogenic CD11c+ dendritic cells, reduce the clonal expansion of conventional CD4+ T cells and increase CD4+ Foxp3+ regulatory T cells. Altogether, these data might open promising perspectives for demyelinating diseases.


Assuntos
Transdução de Sinais , Androgênios , Animais , Doenças Desmielinizantes , Proteínas Hedgehog , Bainha de Mielina , Doenças Neuroinflamatórias , Oligodendroglia , Testosterona
5.
FASEB J ; 34(10): 13641-13653, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32862444

RESUMO

Leucine-rich repeat and immunoglobin-domain containing (LRRIG) proteins that are commonly involved in protein-protein interactions play important roles in nervous system development and maintenance. LINGO-1, one of this family members, is characterized as a negative regulator of neuronal survival, axonal regeneration, and oligodendrocyte precursor cell (OPC) differentiation into mature myelinating oligodendrocytes. Three LINGO-1 homologs named LINGO-2, LINGO-3, and LINGO-4 have been described. However, their relative expression and functions remain unexplored. Here, we show by in situ hybridization and quantitative polymerase chain reaction that the transcripts of LINGO homologs are differentially expressed in the central nervous system. The immunostaining of brain slices confirmed this observation and showed the co-expression of LINGO-1 with its homologs. Using BRET (bioluminescence resonance energy transfer) analysis, we demonstrate that LINGO proteins can physically interact with each of the other ones with comparable affinities and thus form the oligomeric states. Furthermore, co-immunoprecipitation experiments indicate that LINGO proteins form heterocomplexes in both heterologous systems and cortical neurons. Since LINGO-1 is a promising target for the treatment of demyelinating diseases, its ability to form heteromeric complexes reveals a new level of complexity in its functioning and opens the way for new strategies to achieve diverse and nuanced LINGO-1 regulation.


Assuntos
Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Multimerização Proteica , Animais , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Ligação Proteica
6.
Front Cell Neurosci ; 14: 79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317939

RESUMO

Myelination is an essential process that consists of the ensheathment of axons by myelin. In the central nervous system (CNS), myelin is synthesized by oligodendrocytes. The proliferation, migration, and differentiation of oligodendrocyte precursor cells constitute a prerequisite before mature oligodendrocytes extend their processes around the axons and progressively generate a multilamellar lipidic sheath. Although myelination is predominately driven by oligodendrocytes, the other glial cells including astrocytes and microglia, also contribute to this process. The present review is an update of the most recent emerging mechanisms involving astrocyte and microglia in myelin production. The contribution of these cells will be first described during developmental myelination that occurs in the early postnatal period and is critical for the proper development of cognition and behavior. Then, we will report the novel findings regarding the beneficial or deleterious effects of astroglia and microglia, which respectively promote or impair the endogenous capacity of oligodendrocyte progenitor cells (OPCs) to induce spontaneous remyelination after myelin loss. Acute delineation of astrocyte and microglia activities and cross-talk should uncover the way towards novel therapeutic perspectives aimed at recovering proper myelination during development or at breaking down the barriers impeding the regeneration of the damaged myelin that occurs in CNS demyelinating diseases.

7.
Development ; 146(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048318

RESUMO

Myelination leads to the formation of myelin sheaths surrounding neuronal axons and is crucial for function, plasticity and repair of the central nervous system (CNS). It relies on the interaction of the axons and the oligodendrocytes: the glial cells producing CNS myelin. Here, we have investigated the role of a crucial component of the Sonic hedgehog (Shh) signalling pathway, the co-receptor Boc, in developmental and repairing myelination. During development, Boc mutant mice display a transient decrease in oligodendroglial cell density together with delayed myelination. Despite recovery of oligodendroglial cells at later stages, adult mutants still exhibit a lower production of myelin basic protein correlated with a significant decrease in the calibre of callosal axons and a reduced amount of the neurofilament NF-M. During myelin repair, the altered OPC differentiation observed in the mutant is reminiscent of the phenotype observed after blockade of Shh signalling. In addition, Boc mutant microglia/macrophages unexpectedly exhibit the apparent inability to transition from a highly to a faintly ramified morphology in vivo Altogether, these results identify Boc as an important component of myelin formation and repair.


Assuntos
Imunoglobulina G/metabolismo , Bainha de Mielina/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cuprizona/farmacologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Imunoglobulina G/genética , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA