Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 11(1): 276-286, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38389678

RESUMO

This study aims to evaluate the effective use of porous pumice powder as an additive in acrylonitrile-butadiene-styrene (ABS)-based composite materials. The influence of pumice addition on mechanical, thermomechanical, thermal, and physical properties of ABS filaments was reported. Two types of pumice, namely acidic pumice (AP) and basic pumice (BP), were melt compounded with ABS at loading levels of 5%, 10%, 15%, and 20% by weight using the melt extrusion preparation method. Composites were shaped into dog bone test specimens by the injection molding process. The physical properties of pumice powders were investigated by particle size analysis and X-ray spectroscopy techniques. Mechanical, thermomechanical, thermal, melt flow, and morphological behaviors of ABS/AP and ABS/BP composite filaments were proposed. According to test results, pumice addition led to an increase in the mechanical response of ABS up to a filling ratio of 10%. Further inclusion of pumice caused sharp reduction due to the possible agglomeration of pumice particles. Composites filled with AP yielded remarkably higher mechanical performance in terms of tensile, impact, and hardness strength compared with BP-loaded composites. According to thermal analyses, ABS exhibited higher thermal stability after incorporation of AP and BP. Pumice addition also resulted in raising the glass transition temperature of ABS. Melt flow index (MFI) findings revealed that addition of two types of pumice led to an opposite trend in the melt flow behavior of ABS filaments. Homogeneous dispersion of pumice particles into the ABS matrix when adding low amounts, as well as reduction in dispersion homogeneity with high amounts, of AP and BP was confirmed by scanning electron microscopy (SEM) micrographs.

2.
Mikrochim Acta ; 190(4): 142, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36933052

RESUMO

The present study aims to develop an electroanalytical method to determine one of the most significant antineoplastic agents, topotecan (TPT), using a novel and selective molecular imprinted polymer (MIP) method for the first time. The MIP was synthesized using the electropolymerization method using TPT as a template molecule and pyrrole (Pyr) as the functional monomer on a metal-organic framework decorated with chitosan-stabilized gold nanoparticles (Au-CH@MOF-5). The materials' morphological and physical characteristics were characterized using various physical techniques. The analytical characteristics of the obtained sensors were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). After all characterizations and optimizing the experimental conditions, MIP-Au-CH@MOF-5 and NIP-Au-CH@MOF-5 were evaluated on the glassy carbon electrode (GCE). MIP-Au-CH@MOF-5/GCE indicated a wide linear response of 0.4-70.0 nM and a low detection limit (LOD) of 0.298 nM. The developed sensor also showed excellent recovery in human plasma and nasal samples with recoveries of 94.41-106.16 % and 95.1-107.0 %, respectively, confirming its potential for future on-site monitoring of TPT in real samples. This methodology offers a different approach to electroanalytical procedures using MIP methods. Moreover, the high sensitivity and selectivity of the developed sensor were illustrated by the ability to recognize TPT over potentially interfering agents. Hence, it can be speculated that the fabricated MIP-Au-CH@MOF-5/GCE may be utilized in a multitude of areas, including public health and food quality.


Assuntos
Quitosana , Nanopartículas Metálicas , Estruturas Metalorgânicas , Impressão Molecular , Humanos , Polímeros Molecularmente Impressos , Quitosana/química , Topotecan , Ouro/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Limite de Detecção , Polímeros/química , Carbono/química
3.
Inorg Chem ; 59(14): 9728-9738, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32589025

RESUMO

Hydrazine borane (HB; N2H4BH3) has been considered to be one of the most promising solid chemical hydrogen storage materials owing to its high hydrogen capacity and stability under ambient conditions. Despite that, the high purity of hydrogen production from the complete dehydrogenation of HB stands as a major problem that needs to be solved for the convenient use of HB in on-demand hydrogen production systems. In this study, we describe the development of a new catalytic material comprised of bimetallic Ni@Ir core-shell nanoparticles (NPs) supported on OMS-2-type manganese oxide octahedral molecular sieve nanorods (Ni@Ir/OMS-2), which can reproducibly be prepared by following a synthesis protocol including (i) the oleylamine-mediated preparation of colloidal Ni@Ir NPs and (ii) wet impregnation of these ex situ synthesized Ni@Ir NPs onto the OMS-2 surface. The characterization of Ni@Ir/OMS-2 has been done by using various spectroscopic and visualization techniques, and their results have revealed the formation of well-dispersed Ni@Ir core-shell NPs on the surface of OMS-2. The catalytic employment of Ni@Ir/OMS-2 in the dehydrogenation of HB showed that Ni0.22@Ir0.78/OMS-2 exhibited high dehydrogenation selectivity (>99%) at complete conversion with a turnover frequency (TOF) value of 2590 h-1 at 323 K, which is the highest activity value among all reported catalysts for the complete dehydrogenation of HB. Furthermore, the Ni0.22@Ir0.78/OMS-2 catalyst enables facile recovery and high stability against agglomeration and leaching, which make it a reusable catalyst in the complete dehydrogenation of HB. The studies reported herein also include the collection of wealthy kinetic data to determine the activation parameters for Ni0.22@Ir0.78/OMS-2-catalyzed dehydrogenation of HB.

4.
J Hazard Mater ; 369: 96-107, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776607

RESUMO

We reported the improved catalytic property of Pd (0) nanoparticles decorated on amine-functionalized graphene nanosheets (Pd/GNS-NH2) for the hydrogenation of nitrophenol derivatives in the presence of NaBH4 at moderate conditions. Pd/GNS-NH2 nanocatalyst was synthesized by the deposition-reduction method. Sundry techniques such as ICP-OES, P-XRD, XPS, TEM, HR-TEM and EDX have been applied to explain the structure and morphology of the Pd/GNS-NH2 nanocatalyst. The results show that the Pd (0) nanoparticles are perfectly dispersed on the surface of the GNS-NH2 support material (dmean = 1.38-2.63 nm). The catalytic activity of the Pd/GNS-NH2 nanocatalyst was tested in the hydrogenation of nitrophenol derivatives in water in the presence of NaBH4 as reductant and the excellent activity of nanocatalyst have been detected against 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,4,6-trinitrophenol derivatives with 116.8, 65.9, 42.8 and 11.4 min-1 initial TOF values, respectively. Another important point is that the nanocatalyst has very high reusability performance (at 5th reuse between 71.5 and 91.5%) for the hydrogenation of nitrophenols. Finally, catalytic studies have been carried out at various temperatures to calculate the Ea, ΔH≠ and ΔS≠.

5.
ACS Appl Mater Interfaces ; 10(31): 26162-26169, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29989394

RESUMO

We report the fabrication of a novel and highly active nanocatalyst system comprising electrospun carbon nanofiber (CNF)-supported ruthenium nanoparticles (NPs) (Ru@CNF), which can reproducibly be prepared by the ozone-assisted atomic layer deposition (ALD) of Ru NPs on electrospun CNFs. Polyacrylonitrile (PAN) was electropsun into bead-free one-dimensional (1D) nanofibers by electrospinning. The electrospun PAN nanofibers were converted into well-defined 1D CNFs by a two-step carbonization process. We took advantage of an ozone-assisted ALD technique to uniformly decorate the CNF support by highly monodisperse Ru NPs of 3.4 ± 0.4 nm size. The Ru@CNF nanocatalyst system catalyzes the hydrolytic dehydrogenation of methylamine borane (CH3NH2BH3), which has been considered as one of the attractive materials for the efficient chemical hydrogen storage, with a record turnover frequency of 563 mol H2/mol Ru × min and an excellent conversion (>99%) under air at room temperature with the activation energy ( Ea) of 30.1 kJ/mol. Moreover, Ru@CNF demonstrated remarkable reusability performance and conserved 72% of its inherent catalytic activity even at the fifth recycle.

6.
Chem Commun (Camb) ; 51(57): 11417-20, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26087033

RESUMO

Herein we show that a previously unappreciated combination of CrAuPd alloy nanoparticles and amine-grafted silica support facilitates the liberation of CO-free H2 from dehydrogenation of formic acid with record activity in the absence of any additives at room temperature. Furthermore, their excellent catalytic stability makes them isolable and reusable heterogeneous catalysts in the formic acid dehydrogenation.

7.
Materials (Basel) ; 8(7): 4226-4238, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28793435

RESUMO

Intensive efforts have been devoted to the development of new materials for safe and efficient hydrogen storage. Among them, ammonia-borane appears to be a promising candidate due to its high gravimetric hydrogen storage capacity. Ammonia-borane can release hydrogen on hydrolysis in aqueous solution under mild conditions in the presence of a suitable catalyst. Herein, we report the synthesis of ruthenium(0) nanoparticles stabilized by dihydrogenphosphate anions with an average particle size of 2.9 ± 0.9 nm acting as a water-dispersible nanocatalyst in the hydrolysis of ammonia-borane. They provide an initial turnover frequency (TOF) value of 80 min-1 in hydrogen generation from the hydrolysis of ammonia-borane at room temperature. Moreover, the high stability of these ruthenium(0) nanoparticles makes them long-lived and reusable nanocatalysts for the hydrolysis of ammonia-borane. They provide 56,800 total turnovers and retain ~80% of their initial activity even at the fifth catalytic run in the hydrolysis of ammonia-borane at room temperature.

8.
Dalton Trans ; 41(41): 12690-6, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22961286

RESUMO

Today, the synthesis of well-defined metal nanoparticles stabilized by the metal-organic frameworks (MOFs), which provide high specific surface areas, tunable pore sizes, and guest interactable organic linkers, and the discovery of their unique properties are still challenging goals. The chemically robust zeolitic imidazole framework (ZIF) is a subclass of MOF. In this study, the microporous sodalite-like ZIF-8 (Zn(MeIM); MeIM = 2-methylimidazole) was selected as host matrix to stabilize guest iridium nanoparticles (IrNPs). The iridium loading was achieved via gas phase infiltration of Ir(COD)(MeCp) (methylcyclopentadienyl)(1,5-cyclooctadiene)iridium(i)) precursor followed by hydrogenolysis of the inclusion compound Ir(COD)(MeCp)@ZIF-8 to form the IrNPs@ZIF-8. The characterization of IrNPs@ZIF-8 by ICP-MS, P-XRD, XPS, (13)C MAS NMR, TEM, HRTEM, STEM, STEM-EDX, HAADF-STEM, DR-UV-vis, EA analyses and N(2)-adsorption-desorption techniques reveal the formation of well-dispersed iridium nanoparticles (3.3 ± 1.7 nm) within the framework of ZIF-8 (IrNPs@ZIF-8) by keeping the host framework intact. The catalytic application of IrNPs@ZIF-8 in terms of activity, selectivity, reusability and durability was demonstrated in the hydrogenation of cyclohexene and phenylacetylene under mild conditions, in which they were found to be highly active catalysts. Moreover, they show great durability against sintering and leaching throughout the catalytic runs that make them highly reusable catalysts. They retain their inherent catalytic activity even at the fifth catalytic run in the hydrogenation of cyclohexene and phenylacetylene.

9.
ACS Appl Mater Interfaces ; 4(8): 3866-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22856878

RESUMO

Herein we report the development of a new and cost-effective nanocomposite catalyst for the hydrolysis of ammonia-borane (NH(3)BH(3)), which is considered to be one of the most promising solid hydrogen carriers because of its high gravimetric hydrogen storage capacity (19.6% wt) and low molecular weight. The new catalyst system consisting of copper nanoparticles supported on magnetic SiO(2)/CoFe(2)O(4) particles was reproducibly prepared by wet-impregnation of Cu(II) ions on SiO(2)/CoFe(2)O(4) followed by in situ reduction of the Cu(II) ions on the surface of magnetic support during the hydrolysis of NH(3)BH(3) and characterized by ICP-MS, XRD, XPS, TEM, HR-TEM and N(2) adsorption-desorption technique. Copper nanoparticles supported on silica coated cobalt(II) ferrite SiO(2)/CoFe(2)O(4) (CuNPs@SCF) act as highly active catalyst in the hydrolysis of ammonia-borane, providing an initial turnover frequency of TOF = 2400 h(-1) at room temperature, which is not only higher than all the non-noble metal catalysts but also higher than the majority of the noble metal based homogeneous and heterogeneous catalysts employed in the same reaction. More importantly, they were easily recovered by using a permanent magnet in the reactor wall and reused for up to 10 recycles without losing their inherent catalytic activity significantly, which demonstrates the exceptional reusability of the CuNPs@SCF catalyst.

10.
Dalton Trans ; 41(16): 4976-84, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22410969

RESUMO

Herein we report the discovery of an in situ generated, highly active nanocatalyst for the room temperature dehydrogenation of dimethylamine-borane in water. The new catalyst system consisting of ruthenium(0) nanoparticles stabilized by the hydrogenphosphate anion can readily and reproducibly be formed under in situ conditions from the dimethylamine-borane reduction of a ruthenium(III) precatalyst in tetrabutylammonium dihydrogenphosphate solution at 25 ± 0.1 °C. These new water dispersible ruthenium nanoparticles were characterized by using a combination of advanced analytical techniques. The results show the formation of well-dispersed ruthenium(0) nanoparticles of 2.9 ± 0.9 nm size stabilized by the hydrogenphosphate anion in aqueous solution. The resulting ruthenium(0) nanoparticles act as a highly active catalyst in the generation of 3.0 equiv. of H(2) from the hydrolytic dehydrogenation of dimethylamine-borane with an initial TOF value of 500 h(-1) at 25 ± 0.1 °C. Moreover, they provide exceptional catalytic lifetime (TTO = 11,600) in the same reaction at room temperature. The work reported here also includes the following results; (i) monitoring the formation kinetics of the in situ generated ruthenium nanoparticles, by using the hydrogen generation from the hydrolytic dehydrogenation of dimethylamine-borane as a catalytic reporter reaction, shows that sigmoidal kinetics of catalyst formation and concomitant dehydrogenation fits well to the two-step, slow nucleation and then autocatalytic surface growth mechanism, A → B (rate constant k(1)) and A + B → 2B (rate constant k(2)), in which A is RuCl(3)·3H(2)O and B is the growing, catalytically active Ru(0)(n) nanoclusters. (ii) Hg(0) poisoning coupled with activity measurements after solution infiltration demonstrates that the in situ generated ruthenium(0) nanoparticles act as a kinetically competent heterogeneous catalyst in hydrogen generation from the hydrolytic dehydrogenation of dimethylamine-borane. (iii) A compilation of kinetic data depending on the temperature and catalyst concentration is used to determine the dependency of reaction rate on catalyst concentration and the activation energy of the reaction, respectively.

11.
Dalton Trans ; 41(16): 4912-8, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22451008

RESUMO

Safe and efficient hydrogen storage is a major obstacle for using hydrogen as an energy carrier. Therefore, intensive efforts have been focused on the development of new materials for chemical hydrogen storage. Of particular importance, hydrazine borane (N(2)H(4)BH(3)) is emerging as one of the most promising solid hydrogen carriers due to its high gravimetric hydrogen storage capacity (15.4 wt%) and low molecular weight. Herein, we report metal catalyzed methanolysis of hydrazine borane (N(2)H(4)BH(3), HB) as a fast hydrogen generation system under mild conditions. When trace amounts of nickel(ii) chloride (NiCl(2)) is added to the methanol solution of hydrazine borane ([HB]/[Ni] ≥ 200) the reaction solution releases 3 equiv. of H(2) with a rate of 24 mol H(2) (mol Ni min)(-1) at room temperature. The results reported here also includes (i) identification of the reaction products by using ATR-IR, DP-MS, (1)H and (11)B NMR spectroscopic techniques and the establishment of the reaction stoichiometry, (ii) investigation of the effect of substrate and catalyst concentrations on the hydrogen generation rate to determine the rate law for the catalytic methanolysis of hydrazine borane, (iii) determination of the activation parameters (E(a), ΔH(#), and ΔS(#)) for the catalytic methanolysis of hydrazine borane by using the temperature dependent rate data of the hydrogen generation.

12.
Langmuir ; 28(11): 4908-14, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22356554

RESUMO

The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units.

13.
Dalton Trans ; 41(2): 590-8, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22052298

RESUMO

Dimethylamine-borane, (CH(3))(2)NHBH(3), has been considered as one of the attractive materials for the efficient storage of hydrogen, which is still one of the key issues in the "Hydrogen Economy". In a recent communication we have reported the synthesis and characterization of 3-aminopropyltriethoxysilane stabilized ruthenium(0) nanoparticles with the preliminary results for their catalytic performance in the dehydrogenation of dimethylamine-borane at room temperature. Herein, we report a complete work including (i) effect of initial [APTS]/[Ru] molar ratio on both the size and the catalytic activity of ruthenium(0) nanoparticles, (ii) collection of extensive kinetic data under non-MTL conditions depending on the substrate and catalyst concentrations to define the rate law of Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane at room temperature, (iii) determination of activation parameters (E(a), ΔH(#) and ΔS(#)) for Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane; (iv) demonstration of the catalytic lifetime of Ru(0)/APTS nanoparticles in the dehydrogenation of dimethylamine-borane at room temperature, (v) testing the bottlability and reusability of Ru(0)/APTS nanocatalyst in the room-temperature dehydrogenation of dimethylamine-borane, (vi) quantitative carbon disulfide (CS(2)) poisoning experiments to find a corrected TTO and TOF values on a per-active-ruthenium-atom basis, (vii) a summary of extensive literature review for the catalysts tested in the catalytic dehydrogenation of dimethylamine-borane as part of the results and discussions.

14.
Chem Commun (Camb) ; 48(8): 1180-2, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22158916

RESUMO

A new type of supported rhodium nanoparticles were reproducibly prepared from N(2)H(4)BH(3) reduction of [Rh(µ-Cl)(1,5-cod)](2) without using any solid support and pre-treatment technique. Their characterization shows the formation of well dispersed rhodium(0) nanoparticles within the framework of a polyaminoborane based polymeric support. These new rhodium(0) nanoparticles were found to be the most active supported catalyst in the catalytic dehydrogenation of ammonia-borane in water at room temperature.

15.
Langmuir ; 28(1): 60-4, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22145782

RESUMO

The hydrogenation of aromatics under mild conditions remains a challenge in the fields of synthetic and petroleum chemistry. Described herein is a new catalytic material that shows excellent catalytic performance in terms of activity, selectivity, and reusability in the hydrogenation of aromatics in solvent-free systems under mild conditions. The catalyst, consisting of rhodium nanoparticles supported on nanocrystalline hydroxyapatite, can quantitatively hydrogenate neat benzene to cyclohexane with exceptionally high rates (initial TOF > 10(3) h(-1)) at 298 K and 3 bars of initial H(2) pressure. This new material maintains its inherent catalytic activity after several reuses. Importantly, catalyst preparation does not require elaborate procedures because the active metal nanoparticles are readily formed from the in situ reduction of Rh(3+)-exchanged hydroxyapatite while submerged in the aromatic solvent at room temperature under 3 bars of H(2) pressure.

16.
Nanoscale ; 3(9): 3462-81, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21833406

RESUMO

Metal nanoparticles have attracted much attention over the last decade owing to their unique properties, different to their bulk counterparts, which pave the way for their application in different fields from materials science and engineering to biomedical applications. Of particular interest, the use of metal nanoparticles in catalysis has brought superior efficiency in terms of activity, selectivity and lifetime to heterogeneous catalysis. This article reviews the recent developments in the synthesis routes and the catalytic performance of metal nanoparticles depending on the solvent used for various organic and inorganic transformations. Additionally, we also discuss the prevalent complications and their possible solutions plus future prospects in the field of nanocatalysis.


Assuntos
Nanopartículas Metálicas/química , Catálise , Dendrímeros/química , Líquidos Iônicos/química , Nanopartículas Metálicas/ultraestrutura , Metais/química , Polímeros/química , Solventes/química , Eletricidade Estática
17.
Dalton Trans ; 40(14): 3584-91, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21373677

RESUMO

Rhodium(0) nanoparticles stabilized by tert-butylammonium octanoate were prepared reproducibly from the reduction of rhodium(II) octanoate with tert-butylamine-borane in toluene at room temperature and characterized by ICP-OES, TEM, HRTEM, STEM, EDX, XRD, XPS, FTIR, UV-vis, (11)B, (13)C and (1)H NMR spectroscopy and elemental analysis. These new rhodium(0) nanoparticles show unprecedented catalytic activity, lifetime and reusability as a heterogeneous catalyst in room temperature dehydrogenation of ammonia-borane, which is under significant investigation as a potential hydrogen storage material.

18.
Dalton Trans ; 39(32): 7521-7, 2010 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-20614055

RESUMO

Osmium(0) nanoclusters stabilized by zeolite-Y framework were reproducibly prepared by a simple two step procedure involving the incorporation of osmium(III) cations into the zeolite matrix by ion-exchange, followed by their reduction within the cavities of zeolite with sodium borohydride in aqueous solution all at room temperature. The composition and morphology of osmium(0) nanoclusters stabilized by zeolite framework, as well as the integrity and crystallinity of the host material were investigated by using ICP-OES, XRD, XPS, SEM, TEM, HRTEM, TEM/EDX, mid-IR, far-IR spectroscopies, and N(2)-adsorption/desorption technique. The results of the multiprong analysis reveal the formation of osmium(0) nanoclusters within the cavities of zeolite-Y without causing alteration in the framework lattice, formation of mesopores, or loss in the crystallinity of the host material. More importantly, far-IR studies showed that after the reduction of Os(3+) cations by sodium borohydride the Na(+) cations reoccupy their authentic cation sites restoring the integrity of zeolite-Y. The catalytic activity of osmium(0) nanoclusters stabilized by zeolite framework was tested in the aerobic oxidation of activated, unactivated and heteroatom containing alcohols to carbonyl compounds and was found to provide high activity and selectivity even under mild conditions (80 degrees C and 1 atm O(2) or air). Moreover, they were found to be stable enough to be isolated and bottled as solid material, which can be reused as active catalyst under the identical conditions of the first run.

19.
Langmuir ; 26(14): 12455-64, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20536218

RESUMO

"Weakly ligated/labile ligand" nanoparticles, that is nanoparticles where only weakly coordinated ligands plus the desired catalytic reactants are present, are of fundamental interest. Described herein is a catalyst system for benzene hydrogenation to cyclohexane consisting of "weakly ligated/labile ligand" Ir(0) nanoparticles and aggregates plus dry-HCl formed in situ from commercially available [(1,5-COD)IrCl](2) plus 40 +/- 1 psig (approximately 2.7 atm) H(2) at 22 +/- 0.1 degrees C. Multiple control and other experiments reveal the following points: (i) that this catalyst system is quite active with a TOF (turnover frequency) of 25 h(-1) and TTO (total turnovers) of 5250; (ii) that the BF(4)(-) and PF(6)(-) iridium salt precursors, [(1,5-COD)Ir(CH(3)CN)(2)]BF(4) and [(1,5-COD)Ir(CH(3)CN)(2)]PF(6), yield inferior catalysts; (iii) that iridium black with or without added, preformed HCl cannot achieve the TOF of 25 h(-1) of the in situ formed Ir(0)/dry-HCl catalyst. However and importantly, CS(2) poisoning experiments yield the same activity per active iridium atom for both the Ir(0)/dry-HCl and Ir black/no-HCl catalysts (12.5 h(-1) Ir(1-)), but reveal that the Ir(0)/dry-HCl system is 10-fold more dispersed compared to the Ir(0) black catalyst. The simple but important and key result is that "weakly ligated/labile ligand" Ir(0) nanoparticles and aggregates have been made in situ as demonstrated by the fact that they have identical, per exposed Ir(0) activity within experimental error to Ir(0) black and that they have no possible ligands other than those desired for the catalysis (benzene and H(2)) plus the at best poor ligand HCl. As expected, the in situ catalyst is poorly stabilized, exhibiting only 60% of its initial activity in a second run of benzene hydrogenation and resulting in bulk metal precipitation. However, stabilization of the Ir(0) nanoparticles with a ca. 2-fold higher catalytic activity and somewhat longer lifetime for the complete hydrogenation of benzene was accomplished by supporting the Ir(0) nanoparticles onto zeolite-Y (TOF of 47 h(-1) and 8600 TTO under otherwise identical conditions). Also reported is the interesting result that Cl(-) (present as Proton Sponge x H(+)Cl(-)) completely poisons benzene hydrogenation catalysis, but not the easier cyclohexene hydrogenation catalysis under otherwise the same conditions, results that suggest different active sites for these ostensibly related hydrogenation reaction. The results suggest that synthetic routes to "weakly ligated/labile ligand" nanoparticles exhibiting improved catalytic performance is an important goal worthy of additional effort.

20.
Chem Commun (Camb) ; 46(26): 4788-90, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20495727

RESUMO

The preparation of ruthenium(0) nanoclusters supported on hydroxyapatite and their characterization by a combination of complementary techniques are described. The resultant ruthenium(0) nanoclusters provide high activity and reusability in the complete hydrogenation of aromatics under mild conditions (at 25 degrees C and with 42 psi initial H(2) pressure).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA