Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(5): 435, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587761

RESUMO

Simple and sensitive electrochemical sensors were fabricated from cerium oxide (CeO2) and copper-benzene tricarboxylic acid-modified cerium oxide (CeO2-Cu-BTC) materials for differential pulse voltammetric analysis of toxic cadmium (Cd) ions in aqueous solutions. The materials were prepared by hydrothermal method and structurally characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray (SEM-EDX), thermogravimetric analysis (TGA), and X-ray diffraction analysis (XRD). The CeO2-modified carbon paste electrode (CeCPE) and the CeO2-Cu-BTC-modified carbon paste electrode (CeBCPE) were electrochemically characterized by their cyclic voltammetry and electrochemical impedance study in standard K3[Fe(CN)6] single-electron redox process. Their electrochemical surface areas, electrode surface coverages, and charge transfer resistances were calculated to be 1.46 cm2, 2.338 × 10-5 mol∙cm-2, and 2790 Ω and 5.48 cm2, 2.476 × 10-5 mol∙cm-2, and 1254.65 Ω for CeCPE and CeBCPE, respectively. These fabricated electrodes were used as electrochemical sensors for cadmium ion estimation by optimizing the experimental parameters through differential pulse voltammetry. The optimized conditions included 10% modifier for CeCPE and 5% modifier for CeBCPE in 0.12 M HCl solution of pH 5 as supporting electrolyte at - 1.2 V deposition for 30 s in 0.01 to 10 mg L-1 linear cadmium solution range. Under these conditions, the limit of quantification (LOQ) of 0.368 mg L-1 and 0.005 mg L-1 was calculated for CeCPE and CeBCPE electrodes, respectively. The limit of detection (LOD) was calculated to be 0.121 mg L-1 and 0.002 mg L-1 for CeCPE and CeBCPE, respectively. All the experimental results indicated that electrodes fabricated from CeO2-Cu-BTC show better performance as compared to CeO2-based electrodes. Both these types of electrochemical sensors presented good repeatability and performance in the presence of interfering ions as well. From these findings, it can also be inferred that these electrochemical sensors can provide a simple and very sensitive method for approximation of toxic cadmium ions in aqueous solutions.


Assuntos
Cádmio , Cério , Cobre , Cicloexanos , Monitoramento Ambiental , Íons , Carbono
2.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764250

RESUMO

Nowadays, for environmental remediation, photocatalytic process involving graphene-based semiconductors is considered a very promising oxidation process for water treatment. In the present study, nanocomposite (Cu/Ni/rGO) has been synthesized by Dypsis lutescens leaf extract. Characterization of the sample was carried out by UV-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Different parameters like contact time, nanocatalyst amount, dye concentration, effect of temperature. and pH factor were optimized to examine the maximum removal efficiency for dyes rhodamine B and alizarine R with and without visible light source. In both cases, i.e., with or without light, maximum removal was observed at 20 mg of nanocatalyst for 5 ppm concentration of both dyes at 45 °C temperature and pH 10 for rhodamine B and pH 4 for alizarine R, respectively with a 20 min contact time. Maximum removal of dyes 93% rhodamine B and 91% alizarine R were observed under a tungsten lamp as compared to without a tungsten lamp, i.e., 78% of RhB and 75% of AR from mixture solution of these dyes. To assess the rate of reaction, spontaneity, and nature of reaction thermodynamics, kinetics and adsorption isotherms were studied. Thermodynamic values indicated that both dyes depicted endothermic and spontaneous degradation processes. Isotherm data fitted best to a Freundlich isotherm, while results of kinetic studies of both dyes followed the pseudo 2nd order kinetic equation. In the end, scavenging radical studies concluded that hydroxyl radicals were the main active specie involved in the photocatalytic degradation process, and regeneration experiments resulted that Cu/Ni/rGO nanocomposites were re-utilized for about four times.

3.
Int J Phytoremediation ; 24(14): 1518-1532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188838

RESUMO

Many compounds containing sulfur and phosphorous are present in wastewater of various industries like food processing, paper making, etc. The higher level of phosphate and sulfate ions causes many problems in everyday life. Based on this, nickel monometallic and nickel-cobalt bimetallic nanoparticles were synthesized using leaves extract of Coix lacryma-jobi L. and applied for sulfate and phosphate ions removal. UV-Vis. spectroscopy, fourier transformed infrared spectroscopy; scanning electron microscopy; X-ray diffraction, and energy-dispersive X-ray spectroscopy were used as characterizing techniques for synthesized nanoparticles. UV spectra for Ni nanoparticles showed the absorption band in the 380-400 nm range, while for Ni-Co bimetallic nanoparticles was noticed at 396 nm and 513 nm. Different functional groups were observed in FTIR spectra of leaves extract which acted as reducing and capping agents to form stable NPs. Different factors like adsorbent dosage, pH, temperature, adsorbate concentration, and time were optimized for maximum removal of sulfate and phosphate anions. The antioxidant potential of prepared nanoparticles was assessed by three different methods. The kinetics, thermodynamics, and adsorption isotherms were also studied for these ions removal. In the current study, the green approach was easy, time-saving and proved to be beneficial to remove sulfate and phosphate anions from wastewater.


The leaves extract of Coix lacryma-jobi L. were employed for the synthesis of nickel monometallic and nickel-cobalt bimetallic nanoparticles and employed for the removal of sulfate and phosphate ions from aqueous solution. Antioxidant potential of biosynthesized nanoparticles was also assessed. Hence, the biosynthesized nanomaterial found to be novel adsorbent for removal of sulfate and phosphate from waste water. This research work has not been previously reported in literature.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Níquel/química , Sulfatos , Poluentes Químicos da Água/química , Biodegradação Ambiental , Cinética , Adsorção , Termodinâmica , Fosfatos , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Biosens Bioelectron ; 74: 895-908, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26253796

RESUMO

Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic.


Assuntos
Arsênio/análise , Condutometria/instrumentação , Eletrodos , Monitoramento Ambiental/instrumentação , Mercúrio/análise , Poluentes Químicos da Água/análise , Condutometria/métodos , Monitoramento Ambiental/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Compostos Inorgânicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA