Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aquat Biosyst ; 8(1): 5, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22480362

RESUMO

BACKGROUND: La Sal del Rey ("the King's Salt") is one of several naturally-occurring salt lakes in Hidalgo County, Texas and is part of the Lower Rio Grande Valley National Wildlife Refuge. The research objective was to isolate and characterize halophilic microorganisms from La Sal del Rey. Water samples were collected from the lake and a small creek that feeds into the lake. Soil samples were collected from land adjacent to the water sample locations. Sample salinity was determined using a refractometer. Samples were diluted and cultured on a synthetic saline medium to grow halophilic bacteria. The density of halophiles was estimated by viable plate counts. A collection of isolates was selected, gram-stained, tested for catalase, and characterized using API 20E® test strips. Isolates were putatively identified by sequencing the 16S rDNA. Carbon source utilization by the microbial community from each sample site was examined using EcoPlate™ assays and the carbon utilization total activity of the community was determined. RESULTS: Results showed that salinity ranged from 4 parts per thousand (ppt) at the lake water source to 420 ppt in water samples taken just along the lake shore. The density of halophilic bacteria in water samples ranged from 1.2 × 102 - 5.2 × 103 colony forming units per ml (cfu ml-1) whereas the density in soil samples ranged from 4.0 × 105 - 2.5 × 106 colony forming units per gram (cfu g-1). In general, as salinity increased the density of the bacterial community decreased. Microbial communities from water and soil samples were able to utilize 12 - 31 carbon substrates. The greatest number of substrates utilized was by water-borne communities compared to soil-based communities, especially at lower salinities. The majority of bacteria isolated were gram-negative, catalase-positive, rods. Biochemical profiles constructed from API 20E® test strips showed that bacterial isolates from low-salinity water samples (4 ppt) showed the greatest phenotypic diversity with regards to the types and number of positive tests from the strip. Isolates taken from water samples at the highest salinity (420 ppt) tended to be less diverse and have only a limited number of positive tests. Sequencing of 16S DNA displayed the presence of members of bacterial genera Bacillus, Halomonas, Pseudomonas, Exiguobacterium and others. The genus Bacillus was most commonly identified. None of the isolates were members of the Archaea probably due to dilution of salts in the samples. CONCLUSIONS: The La Sal del Rey ecosystem supports a robust and diverse bacterial community despite the high salinity of the lake and soil. However, salinity does appear to a limiting factor with regards to the density and diversity of the bacterial communities that inhabit the lake and surrounding area.

2.
Physiol Biochem Zool ; 79(6): 1058-68, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17041871

RESUMO

Several species of arboreal frogs secrete lipids from cutaneous glands and wipe these secretions over the body surfaces to reduce evaporative water losses. Following wiping, frogs become immobile in water-conserving postures, and some have suggested they are torpid. Here we report wiping behaviors and the physiological correlates of immobile postures in the arboreal monkey frog Phyllomedusa hypochondrialis. Skin resistance to water loss was comparatively high, and rates of evaporation were as low as 4% of that from a free water surface. Standard rates of metabolism (SMR) varied from 89 microL O2 h(-1) at 18 degrees C to 316 microL O2 h(-1) at 34 degrees C and were sensitive to both temperature (T) and body mass (W; mL O2 h(-1) = 0.016W0.642 x 10(0.030T)). The mean SMR did not change significantly during four consecutive days of dehydration when animals lost 19%-34% of body mass. Therefore, it appears these frogs do not routinely depress metabolic rates following wiping. However, some individuals that lost higher percentages of body water exhibited trends of decreasing oxygen consumption, suggesting that suppression of metabolic rates might occur at greater levels of body water deficit or perhaps during a slower course of dehydration than imposed by our experiments (e.g., individuals that are secluded during periods of drought).


Assuntos
Anuros/metabolismo , Comportamento Animal/fisiologia , Desidratação , Metabolismo Energético/fisiologia , Pele/metabolismo , Animais , Consumo de Oxigênio/fisiologia , Água/metabolismo
3.
Physiol Biochem Zool ; 76(4): 447-58, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-13130425

RESUMO

Detailed analysis of animal energy budgets requires information on the cost of digestion (specific dynamic action [SDA]), which can represent a significant proportion of ingested energy (up to 30% in infrequent feeders). We studied the effects of snake mass, temperature (25 degrees and 30 degrees C), fasting time (1 and 5 mo), and prey size (10%-50% of snake mass) on SDA in 26 timber rattlesnakes (Crotalus horridus). We used flow-through respirometry to measure hourly CO(2) production rates (VCO2) for 1 d before and up to 17 d after feeding. Crotalus horridus, like previously studied viperids and boids, show large and ecologically relevant increases in metabolism due to feeding. Depending on treatment and individual, VCO2 increased to 2.8-11.8 times the resting metabolic rate within 12-45 h postfeeding and decreased to baseline within 4.3-15.4 d. Significant effects of snake mass, meal mass, and fast length were detected. Increased temperature decreased the time required to complete the process but had little effect on total energy expended on SDA. Energy expended on SDA increased with increasing fast length, snake mass, and prey mass. Considering all of our data, we found that a simple allometric relationship explained 96.7% of the variation in total CO(2) production during SDA. Calculations suggest that energy devoted to SDA may approach 20% of the total annual energy budget of snakes in nature. Discrepancies between our data and some previous studies draw attention to the fact that the measurement, expression, and analysis of SDA may be sensitive to several methodological and statistical assumptions.


Assuntos
Constituição Corporal/fisiologia , Crotalus/fisiologia , Dieta , Metabolismo Energético , Jejum/fisiologia , Temperatura , Animais , Calorimetria Indireta , Dióxido de Carbono/fisiologia , Crotalus/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-12600660

RESUMO

The study of intra- and inter-individual variation in the metabolic response to environmental variation can provide mechanistic explanations to large-scale ecological and evolutionary patterns. In a study of range-limiting factors, variation in resting metabolic rates of cottonmouths (Agkistrodon piscivorus leucostoma) was investigated along a latitudinal gradient in southern populations and in populations near and at the northern range limit. CO(2) production rates of 53 snakes were measured in response to body mass, temperature, time of day, latitude of origin, and sex. The within-subjects effects were similar to those reported for other pit vipers. Metabolic cold adaptation appears to exist, with cottonmouths from northern populations having higher low temperature metabolic rates. Calculations suggest that Arkansas cottonmouths allocate almost twice as much energy to resting metabolism during non-feeding periods (brumation) as Louisiana cottonmouths. While maintenance metabolism alone during brumation is more costly near the northern range limit, it is most likely not a limiting factor in geographic distribution and may be used to fuel important processes other than activity metabolism.


Assuntos
Agkistrodon/metabolismo , Metabolismo Basal , Animais , Arkansas , Peso Corporal , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Geografia , Louisiana , Estações do Ano , Caracteres Sexuais , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA