Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 26(7): 101144, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38641994

RESUMO

PURPOSE: GM1 gangliosidosis (GM1) a lysosomal disorder caused by pathogenic variants in GLB1, is characterized by relentless neurodegeneration. There are no approved treatments. METHODS: Forty-one individuals with type II (late-infantile and juvenile) GM1 participated in a single-site prospective observational study. RESULTS: Classification of 37 distinct variants using American College of Medical Genetics and Genomics criteria resulted in the upgrade of 6 and the submission of 4 new variants. In contrast to type I infantile disease, children with type II had normal or near normal hearing and did not have cherry-red maculae or hepatosplenomegaly. Some older children with juvenile onset disease developed thickened aortic and/or mitral valves. Serial magnetic resonance images demonstrated progressive brain atrophy, more pronounced in late infantile patients. Magnetic resonance spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale, progressing more rapidly in late infantile compared with juvenile onset disease. CONCLUSION: Serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies common misconceptions about type II patients; these are pivotal steps toward more timely diagnosis and better supportive care. The data amassed through this 10-year effort will serve as a robust comparator for ongoing and future therapeutic trials.

2.
medRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38313286

RESUMO

Purpose: GM1 gangliosidosis (GM1) is an ultra-rare lysosomal storage disease caused by pathogenic variants in galactosidase beta 1 (GLB1; NM_000404), primarily characterized by neurodegeneration, often in children. There are no approved treatments for GM1, but clinical trials using gene therapy (NCT03952637, NCT04713475) and small molecule substrate inhibitors (NCT04221451) are ongoing. Understanding the natural history of GM1 is essential for timely diagnosis, facilitating better supportive care, and contextualizing the results of therapeutic trials. Methods: Forty-one individuals with type II GM1 (n=17 late infantile and n=24 juvenile onset) participated in a single-site prospective observational study. Here, we describe the results of extensive multisystem assessment batteries, including clinical labs, neuroimaging, physiological exams, and behavioral assessments. Results: Classification of 37 distinct variants in this cohort was performed according to ACMG criteria and resulted in the upgrade of six and the submission of four new variants to pathogenic or likely pathogenic. In contrast to type I infantile, children with type II disease exhibited normal or near normal hearing and did not have cherry red maculae or significant hepatosplenomegaly. Some older children with juvenile onset developed thickened aortic and/or mitral valves with regurgitation. Serial MRIs demonstrated progressive brain atrophy that were more pronounced in those with late infantile onset. MR spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale and progress more rapidly in late infantile than juvenile onset disease. Conclusion: The comprehensive serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies some common misconceptions about type II patients. Findings from this 10-year endeavor are a pivotal step toward more timely diagnosis and better supportive care for patients. The wealth of data amassed through this effort will serve as a robust comparator for ongoing and future therapeutic trials.

3.
ACS Infect Dis ; 7(11): 2987-2998, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34672535

RESUMO

The ESKAPE pathogens comprise a group of multidrug-resistant bacteria that are the leading cause of nosocomial infections worldwide. The prevalence of antibiotic resistant strains and the relative ease by which bacteria acquire resistance genes highlight the continual need for the development of novel antibiotics against new drug targets. The methylerythritol phosphate (MEP) pathway is an attractive target for the development of new antibiotics. The MEP pathway governs the synthesis of isoprenoids, which are key lipid precursors for vital cell components such as ubiquinone and bacterial hopanoids. Additionally, the MEP pathway is entirely distinct from the corresponding mammalian pathway, the mevalonic acid (MVA) pathway, making the first committed enzyme of the MEP pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC), an attractive target for antibiotic development. To facilitate drug development against two of the ESKAPE pathogens, Acinetobacter baumannii and Klebsiella pneumoniae, we cloned, expressed, purified, and characterized IspC from these two Gram-negative bacteria. Enzyme inhibition assays using IspC from these two pathogens, and compounds fosmidomycin and FR900098, indicate IC50 values ranging from 19.5-45.5 nM. Antimicrobial susceptibility tests with these inhibitors reveal that A. baumannii is susceptible to FR900098, whereas K. pneumoniae is susceptible to both compounds. Finally, to facilitate structure-based drug design of inhibitors targeting A. baumannii IspC, we determined the 2.5 Å crystal structure of IspC from A. baumannii in complex with inhibitor FR900098, and cofactors NADPH and magnesium.


Assuntos
Acinetobacter baumannii , Aldose-Cetose Isomerases , Preparações Farmacêuticas , Acinetobacter baumannii/genética , Aldose-Cetose Isomerases/genética , Klebsiella pneumoniae/genética
5.
ACS Omega ; 5(10): 5170-5175, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201804

RESUMO

Fosmidomycin inhibits IspC (1-deoxy-d-xylulose 5-phosphate reductoisomerase), the first committed enzyme in the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis. The MEP pathway of isoprenoid biosynthesis is essential to the causative agent of the plague, Yersinia pestis, and is entirely distinct from the corresponding mammalian pathway. To further drug development, we established structure-activity relationships of fosmidomycin analogues by assessing a suite of 17 α-phenyl-substituted reverse derivatives of fosmidomycin against Y. pestis IspC. Several of these compounds showed increased potency over fosmidomycin with IC50 values in the nanomolar range. Additionally, we performed antimicrobial susceptibility testing with Y. pestis A1122 (YpA1122). The bacteria were susceptible to several compounds with minimal inhibitory concentration (MIC) values ranging from 128 to 512 µg/mL; a correlation between the IC50 and MIC values was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA