Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(9): e202400080, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38351426

RESUMO

Isomorphic substitution of zeolites with B, Al and Ga is a widely used approach in catalysis. The experimentally reported trend of their acidities decreases in the order: Al>Ga>B. However, a consistent explanation is still lacking in the literature. To bring more understanding of this trend, density functional theory computations were conducted on several model systems. First, the acidity of small clusters with two (2T) and five (5T) tetrahedral sites was analyzed. These systems were then projected onto three large void structures: H-[A]-BEA (52T), H-[A]-FAU (84T) and H-[A]-MOR (112T) with A=B, Al, Ga. Our electron density and Interacting Quantum Atom analyses show that the acidity of Al zeolites originates from the much stronger O-Al bond, which is dominated by the electrostatic attraction. The bridging hydroxyl therefore donates more charge density to the metal, the proton becomes more positive and consequently more acidic. Ga zeolites are more acidic than B zeolites due to the greater covalent nature on the O-Ga bond. The resulting acidity, as seen by ammonia, depends on both the acidic oxygen and the charge distribution of the surrounding oxygens exerted by the substituents.

2.
Chemosphere ; 349: 140879, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061565

RESUMO

In recent years, there has been significant interest from industrial and academic areas in the esterification of carboxylic acids catalyzed by acidic zeolites, as it represents a sustainable and economically viable approach to producing a wide range of high-value-added products. However, there is a lack of comprehensive reviews that address the intricate reaction mechanisms occurring at the catalyst interface at both the experimental and atomistic levels. Therefore, in this review, we provide an overview of the esterification reaction on acidic zeolites based on experimental and theoretical studies. The combination of infrared spectroscopy with atomistic calculations and experimental strategies using modulation excitation spectroscopy techniques combined with phase-sensitive detection is presented as an approach to detecting short-lived intermediates at the interface of zeolitic frameworks under realistic reaction conditions. To achieve this goal, this review has been divided into four sections: The first is a brief introduction highlighting the distinctive features of this review. The second addresses questions about the topology and activity of different zeolitic systems, since these properties are closely correlated in the esterification process. The third section deals with the mechanisms proposed in the literature. The fourth section presents advances in IR techniques and theoretical calculations that can be applied to gain new insights into reaction mechanisms. Finally, this review concludes with a subtle approach, highlighting the main aspects and perspectives of combining experimental and theoretical techniques to elucidate different reaction mechanisms in zeolitic systems.


Assuntos
Ácidos Carboxílicos , Zeolitas , Ácidos Carboxílicos/química , Esterificação , Zeolitas/química , Biomassa , Catálise
3.
J Mol Model ; 17(10): 2501-11, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21193939

RESUMO

Density functional theory and atoms in molecules theory were used to study bond breakage and bond formation in the trans-2-butene protonation reaction in an acidic zeolitic cluster. The progress of this reaction along the intrinsic reaction coordinate, in terms of several topological properties of relevant bond critical points and atomic properties of the key atoms involved in these concerted mechanisms, were analyzed in depth. At B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p) level, the results explained the electron density redistributions associated with the progressive bond breakage and bond formation of the reaction under study, as well as the profiles of the electronic flow between the different atomic basins involved in these electron reorganization processes. In addition, we found a useful set of topological indicators that are useful to show what is happening in each bond/atom involved in the reaction site as the reaction progresses.


Assuntos
Alcenos/química , Zeolitas/química , Prótons , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA