Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 40(12): 2449-2452, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34427747

RESUMO

KEY MESSAGE: Three new artificial microRNA vectors were constructed and evaluated, and results showed that these vectors are highly efficient in the silencing of the citrus PHYTOENE DESATURASE gene.


Assuntos
Citrus/genética , Inativação Gênica , Vetores Genéticos/genética , MicroRNAs/genética , Edição de Genes/métodos , Oxirredutases/genética , Proteínas de Plantas/genética , Brotos de Planta/genética , Plantas Geneticamente Modificadas
2.
Sci Rep ; 10(1): 21404, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293614

RESUMO

Shortening the juvenile stage in citrus and inducing early flowering has been the focus of several citrus genetic improvement programs. FLOWERING LOCUS T (FT) is a small phloem-translocated protein that regulates precocious flowering. In this study, two populations of transgenic Carrizo citrange rootstocks expressing either Citrus clementina FT1 or FT3 genes under the control of the Arabidopsis thaliana phloem specific SUCROSE SYNTHASE 2 (AtSUC2) promoter were developed. The transgenic plants were morphologically similar to the non-transgenic controls (non-transgenic Carrizo citrange), however, only AtSUC2-CcFT3 was capable of inducing precocious flowers. The transgenic lines produced flowers 16 months after transformation and flower buds appeared 30-40 days on juvenile immature scions grafted onto transgenic rootstock. Gene expression analysis revealed that the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and APETALA1 (AP1) were enhanced in the transgenics. Transcriptome profiling of a selected transgenic line showed the induction of genes in different groups including: genes from the flowering induction pathway, APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family genes, and jasmonic acid (JA) pathway genes. Altogether, our results suggested that ectopic expression of CcFT3 in phloem tissues of Carrizo citrange triggered the expression of several genes to mediate early flowering.


Assuntos
Quimera/fisiologia , Perfilação da Expressão Gênica/métodos , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Quimera/genética , Citrus/genética , Citrus/fisiologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Poncirus/genética , Poncirus/fisiologia , Análise de Sequência de RNA
3.
Plants (Basel) ; 8(10)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31575070

RESUMO

This research utilized the E. coli manA gene encoding phosphomannose isomerase (PMI) selection on sucrose/mannose medium to increase transformation efficiencies after biolistic transformation of two immature citrus rootstock cultivars. Plasmid DNA, containing the manA gene and the enhanced green fluorescent protein (egfp) reporter gene, was bombarded into epicotyl explants of immature Carrizo citrange and Swingle citrumelo. GFP positive shoots were micro-grafted onto in vitro grown immature Carrizo rootstocks. Nineteen transgenic Carrizo shoots were obtained from ten paired shots, and eight Swingle shoots from five paired shots. The mean transformation efficiency of Carrizo was 1.9 transgenics/paired shot while the transformation efficiency of Swingle was comparable at 1.6 transgenics/paired shot. The transformants were analyzed by PCR for the presence of transgenes. Southern blot analysis of eight representative Carrizo transgenic events and four Swingle transgenic events showed that all transgenics had one to three copies of the manA gene. The PMI enzyme activity in the transgenic lines was confirmed using the chlorophenol red assay.

4.
Plant Biotechnol J ; 15(12): 1556-1565, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28376249

RESUMO

Plant grafting is an important technique for horticultural and silvicultural production. However, many rootstock plants suffer from undesirable lateral bud outgrowth, low grafting success rates or poor rooting. Here, we used a root-predominant gene promoter (SbUGT) to drive the expression of a tryptophan-2-monooxygenase gene (iaaM) from Agrobacterium tumefaciens to increase auxin levels in tobacco. The transgenic plants, when used as a rootstock, displayed inhibited lateral bud outgrowth, enhanced grafting success rate and improved root initiation. However, root elongation and biomass of SbUGT::iaaM transgenic plants were reduced compared to those of wild-type plants. In contrast, when we used this same promoter to drive CKX (a cytokinin degradation gene) expression, the transgenic tobacco plants displayed enhanced root elongation and biomass. We then made crosses between the SbUGT::CKX and SbUGT::iaaM transgenic plants. We observed that overexpression of the CKX gene neutralized the negative effects of auxin overproduction on root elongation. Also, the simultaneous expression of both the iaaM and CKX genes in rootstock did not disrupt normal growth and developmental patterns in wild-type scions. Our results demonstrate that expression of both the iaaM and CKX genes predominantly in roots of rootstock inhibits lateral bud release from rootstock, improves grafting success rates and enhances root initiation and biomass.


Assuntos
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Nicotiana/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Citocininas/genética , Regulação da Expressão Gênica de Plantas , Oxirredutases/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Nicotiana/crescimento & desenvolvimento
5.
Plant Cell Rep ; 35(9): 1955-62, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27277128

RESUMO

KEY MESSAGE: The development of transgenic citrus plants by the biolistic method. A protocol for the biolistic transformation of epicotyl explants and transgenic shoot regeneration of immature citrange rootstock, cv. Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) and plant regeneration is described. Immature epicotyl explants were bombarded with a vector containing the nptII selectable marker and the gfp reporter. The number of independent, stably transformed tissues/total number of explants, recorded by monitoring GFP fluorescence 4 weeks after bombardment was substantial at 18.4 %, and some fluorescing tissues regenerated into shoots. Fluorescing GFP, putative transgenic shoots were micro-grafted onto immature Carrizo rootstocks in vitro, confirmed by PCR amplification of nptII and gfp coding regions, followed by secondary grafting onto older rootstocks grown in soil. Southern blot analysis indicated that all the fluorescing shoots were transgenic. Multiple and single copies of nptII integrations were confirmed in five regenerated transgenic lines. There is potential to develop a higher throughput biolistics transformation system by optimizing the tissue culture medium to improve shoot regeneration and narrowing the window for plant sampling. This system will be appropriate for transformation with minimal cassettes.


Assuntos
Biolística/métodos , Citrus sinensis/genética , Cruzamentos Genéticos , Poncirus/genética , Transformação Genética , Southern Blotting , Fenótipo , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Plântula/genética
6.
Plant Biotechnol J ; 14(2): 661-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26058948

RESUMO

Elevating the lipid content in vegetative tissues has emerged as a new strategy for increasing energy density and biofuel yield of crops. Storage lipids in contrast to structural and signaling lipids are mainly composed of glycerol esters of fatty acids, also known as triacylglycerol (TAG). TAGs are one of the most energy-rich and abundant forms of reduced carbon available in nature. Therefore, altering the carbon-partitioning balance in favour of TAG in vegetative tissues of sugarcane, one of the highest yielding biomass crops, is expected to drastically increase energy yields. Here we report metabolic engineering to elevate TAG accumulation in vegetative tissues of sugarcane. Constitutive co-expression of WRINKLED1 (WRI1), diacylglycerol acyltransferase1-2 (DGAT1-2) and oleosin1 (OLE1) and simultaneous cosuppression of ADP-glucose pyrophosphorylase (AGPase) and a subunit of the peroxisomal ABC transporter1 (PXA1) in transgenic sugarcane elevated TAG accumulation in leaves or stems by 95- or 43-fold to 1.9% or 0.9% of dry weight (DW), respectively, while expression or suppression of one to three of the target genes increased TAG levels by 1.5- to 9.5-fold. Accumulation of TAG in vegetative progeny plants was consistent with the results from primary transgenics and contributed to a total fatty acid content of up to 4.7% or 1.7% of DW in mature leaves or stems, respectively. Lipid droplets were visible within mesophyll cells of transgenic leaves by confocal fluorescence microscopy. These results provide the basis for optimizations of TAG accumulation in sugarcane and other high yielding biomass grasses and will open new prospects for biofuel applications.


Assuntos
Biomassa , Metabolismo Energético , Engenharia Metabólica/métodos , Saccharum/metabolismo , Triglicerídeos/metabolismo , Southern Blotting , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vetores Genéticos/metabolismo , Gotículas Lipídicas/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Saccharum/genética , Saccharum/crescimento & desenvolvimento , Amido/metabolismo , Sacarose/metabolismo , Transformação Genética , Transgenes
7.
Methods Mol Biol ; 1224: 259-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25416264

RESUMO

Mature tissue protocol for production of transgenic Citrus plants via Agrobacterium-mediated transformation uses explants derived from branches of mature, fruit-bearing trees. Through the multiple cleaning steps consisting of grafting of apical tip meristems on rootstock plants grown under sanitary conditions, "mother" plants are produced that will serve as a source of budding material. These buds are grafted onto rootstock plants grown under the same, highly sanitary conditions. Newly obtained, one meter tall, young grafted plants serve as a source of explants for co-incubation experiments with Agrobacterium. Following successful transformation with Agrobacterium, selected transgenic shoots are micrografted onto rootstock plants in vitro where they are allowed to grow for a couple of months. Grafted transgenic plantlet together with the associated rootstock plant is taken out of culture tubes, severed from the root, and regrafted in terra on a 1-year-old rootstock plant. With the application of proper horticultural techniques, such a plant will yield first fruit about 12-15 months later.


Assuntos
Citrus/crescimento & desenvolvimento , Citrus/genética , Engenharia Genética/métodos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Citrus/citologia , Técnicas de Cocultura , Glucuronidase/genética , Transformação Genética
8.
Biotechnol Biofuels ; 3: 9, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20459651

RESUMO

BACKGROUND: Grasses are relatively recalcitrant to genetic transformation in comparison to certain dicotyledons, yet they constitute some of the most important biofuel crops. Genetic transformation of switchgrass (Panicum virgatum L.) has previously been reported after cocultivation of explants with Agrobacterium and biolistics of embryogenic calli. Experiments to increase transient gene expression in planta may lead to stable transformation methods with increased efficiency. RESULTS: A high-throughput Agrobacterium-mediated transient gene expression system has been developed for in planta inoculation of germinating switchgrass seedlings. Four different Agrobacterium strains were compared for their ability to infect switchgrass seedlings, and strain AGL1 was found to be the most infective. Wounding pretreatments such as sonication, mixing by vortex with carborundum, separation by centrifugation, vacuum infiltration, and high temperature shock significantly increased transient expression of a reporter gene (GUSPlus, a variation of the beta-glucuronidase (GUS) gene). The addition of L-cysteine and dithiothreitol in the presence of acetosyringone significantly increased GUS expression compared with control treatments, whereas the addition of 0.1% surfactants such as Silwet L77 or Li700 decreased GUS expression. 4-Methylumbelliferyl beta-D-galactopyranoside (MUG) assays showed a peak of beta-glucuronidase (GUS) enzyme activity 3 days after cocultivation with Agrobacterium harboring pCambia1305.2, whereas MUG assays showed a peak of enzyme activity 5 days after cocultivation with Agrobacterium harboring pCambia1305.1. CONCLUSION: Agrobacterium strains C58, GV3101 and EHA105 are less able to deliver transfer DNA to switchgrass seedlings (cultivar Alamo) compared with strain AGL1. Transient expression was increased by double or triple wounding treatments such as mixing by vortex with carborundum, sonication, separation by centrifugation, and heat shock. The addition of thiol compounds such as L-cysteine and dithiothreitol in combination with acetosyringone during cocultivation also increased transient expression. The combination of multiple wounding treatments along with the addition of thiol compounds during cocultivation increased transient expression levels from 6% to 54%. There were differences in temporal GUS expression induced by pCambia1305.1 and pCambia1305.2.

9.
Plant Cell Rep ; 28(6): 903-13, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19308413

RESUMO

Hexaploid wheat, one of the world's most important staple crops, remains a challenge for genetic transformation. We are developing a floral transformation protocol for wheat that does not require tissue culture. This paper presents three transformants in the hard red germplasm line Crocus that have been characterized thoroughly at the molecular level over three to six generations. Wheat spikes at the early boot stage, i.e. the early, mid or late uninucleate microspore stages, were immersed in an infiltration medium of strain C58C1 harboring pDs(Hyg)35S, or strain AGL1 harboring pBECKSred. pDs(Hyg)35S contains the NPTII and hph selectable markers, and transformants were detected using paromomycin spray at the whole plant level, NPTII ELISAs, or selection on medium with hygromycin. Strain AGL1, harboring pBECKSred, which contains the maize anthocyanin regulators, Lc and C1, and the NPTII gene, was also used to produce a Crocus transformant. T1 and T2 seeds with red embryos were selected; T1 and T2 plants were screened by sequential tests for paromomycin resistance and NPTII ELISAs. The transformants were low copy number and showed Mendelian segregation in the T2. Stable transmission of the transgenes over several generations has been demonstrated using Southern analysis. Gene expression in advanced progeny was shown using Reverse Transcriptase-PCR and ELISA assays for NPTII protein expression. This protocol has the potential to reduce the time and expense required for wheat transformation.


Assuntos
Flores/genética , Técnicas de Transferência de Genes , Plantas Geneticamente Modificadas/genética , Transformação Genética , Triticum/genética , Agrobacterium tumefaciens/genética , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , RNA de Plantas/genética , Transgenes , Zea mays/genética
10.
Methods Mol Biol ; 478: 105-13, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19009441

RESUMO

A method is described for the floral transformation of wheat using a protocol similar to the floral dip of Arabidopsis. This method does not employ tissue culture of dissected embryos, but instead pre-anthesis spikes with clipped florets at the early, mid to late uninucleate microspore stage are dipped in Agrobacterium infiltration media harboring a vector carrying anthocyanin reporters and the NPTII selectable marker. T1 seeds are examined for color changes induced in the embryo by the anthocyanin reporters. Putatively transformed seeds are germinated and the seedlings are screened for the presence of the NPTII gene based on resistance to paromomycin spray and assayed with NPTII ELISAs. Genomic DNA of putative transformants is digested and analyzed on Southern blots for copy number to determine whether the T-DNA has integrated into the nucleus and to show the number of insertions. The nonoptimized transformation efficiencies range from 0.3 to 0.6% (number of transformants/number of florets dipped) but the efficiencies are higher in terms of the number of transformants produced/number of seeds set ranging from 0.9 to 10%. Research is underway to maximize seed set and optimize the protocol by testing different Agrobacterium strains, visual reporters, vectors, and surfactants.


Assuntos
Flores/genética , Técnicas de Transferência de Genes , Transformação Genética , Triticum/genética , DNA Bacteriano/metabolismo , Resistência a Medicamentos , Ensaio de Imunoadsorção Enzimática , Flores/crescimento & desenvolvimento , Flores/microbiologia , Dosagem de Genes , Paromomicina/farmacologia , Plantas Geneticamente Modificadas , Rhizobium/efeitos dos fármacos , Rhizobium/genética , Rhizobium/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
11.
Plant Cell ; 15(5): 1120-30, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12724538

RESUMO

The Arabidopsis SLY1 (SLEEPY1) gene positively regulates gibberellin (GA) signaling. Positional cloning of SLY1 revealed that it encodes a putative F-box protein. This result suggests that SLY1 is the F-box subunit of an SCF E3 ubiquitin ligase that regulates GA responses. The DELLA domain protein RGA (repressor of ga1-3) is a repressor of GA response that appears to undergo GA-stimulated protein degradation. RGA is a potential substrate of SLY1, because sly1 mutations cause a significant increase in RGA protein accumulation even after GA treatment. This result suggests SCF(SLY1)-targeted degradation of RGA through the 26S proteasome pathway. Further support for this model is provided by the observation that an rga null allele partially suppresses the sly1-10 mutant phenotype. The predicted SLY1 amino acid sequence is highly conserved among plants, indicating a key role in GA response.


Assuntos
Alquil e Aril Transferases , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Peptídeo Sintases/genética , Subunidades Proteicas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Mutação , Peptídeo Sintases/metabolismo , Proteínas de Plantas , Subunidades Proteicas/metabolismo , Proteínas Ligases SKP Culina F-Box , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA