RESUMO
Rationale: Autoimmunity is believed to play a role in idiopathic pulmonary arterial hypertension (IPAH). It is not clear whether this is causative or a bystander of disease and if it carries any prognostic or treatment significance. Objectives: To study autoimmunity in IPAH using a large cross-sectional cohort. Methods: Assessment of the circulating immune cell phenotype was undertaken using flow cytometry, and the profile of serum immunoglobulins was generated using a standardized multiplex array of 19 clinically validated autoantibodies in 473 cases and 946 control subjects. Additional glutathione S-transferase fusion array and ELISA data were used to identify a serum autoantibody to BMPR2 (bone morphogenetic protein receptor type 2). Clustering analyses and clinical correlations were used to determine associations between immunogenicity and clinical outcomes. Measurements and Main Results: Flow cytometric immune profiling demonstrates that IPAH is associated with an altered humoral immune response in addition to raised IgG3. Multiplexed autoantibodies were significantly raised in IPAH, and clustering demonstrated three distinct clusters: "high autoantibody," "low autoantibody," and a small "intermediate" cluster exhibiting high concentrations of ribonucleic protein complex. The high-autoantibody cluster had worse hemodynamics but improved survival. A small subset of patients demonstrated immunoglobulin reactivity to BMPR2. Conclusions: This study establishes aberrant immune regulation and presence of autoantibodies as key features in the profile of a significant proportion of patients with IPAH and is associated with clinical outcomes.
Assuntos
Autoimunidade , Hipertensão Pulmonar , Autoanticorpos , Estudos Transversais , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/genéticaRESUMO
Pulmonary hypertension is a condition with limited effective treatment options. Chronic thromboembolic pulmonary hypertension (CTEPH) is a notable exception, with pulmonary endarterectomy (PEA) often proving curative. This study investigated the plasma metabolome of CTEPH patients, estimated reversibility to an effective treatment and explored the source of metabolic perturbations.We performed untargeted analysis of plasma metabolites in CTEPH patients compared to healthy controls and disease comparators. Changes in metabolic profile were evaluated in response to PEA. A subset of patients were sampled at three anatomical locations and plasma metabolite gradients calculated.We defined and validated altered plasma metabolite profiles in patients with CTEPH. 12 metabolites were confirmed by receiver operating characteristic analysis to distinguish CTEPH and both healthy (area under the curve (AUC) 0.64-0.94, all p<2×10-5) and disease controls (AUC 0.58-0.77, all p<0.05). Many of the metabolic changes were notably similar to those observed in idiopathic pulmonary arterial hypertension (IPAH). Only five metabolites (5-methylthioadenosine, N1-methyladenosine, N1-methylinosine, 7-methylguanine, N-formylmethionine) distinguished CTEPH from chronic thromboembolic disease or IPAH. Significant corrections (15-100% of perturbation) in response to PEA were observed in some, but not all metabolites. Anatomical sampling identified 188 plasma metabolites, with significant gradients in tryptophan, sphingomyelin, methionine and Krebs cycle metabolites. In addition, metabolites associated with CTEPH and gradients showed significant associations with clinical measures of disease severity.We identified a specific metabolic profile that distinguishes CTEPH from controls and disease comparators, despite the observation that most metabolic changes were common to both CTEPH and IPAH patients. Plasma metabolite gradients implicate cardiopulmonary tissue metabolism of metabolites associated with pulmonary hypertension and metabolites that respond to PEA surgery could be a suitable noninvasive marker for evaluating future targeted therapeutic interventions.