Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 16(10): 982-986, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28783160

RESUMO

Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent 'dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed-the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.

2.
Sci Rep ; 6: 28560, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27340085

RESUMO

A combination of far-infrared and Raman spectroscopy is employed to investigate vibrational modes and the carrier behavior in amorphous and crystalline ordered GeTe-Sb2Te3 alloys (GST) epitaxially grown on Si(111). The infrared active GST mode is not observed in the Raman spectra and vice versa, indication of the fact that inversion symmetry is preserved in the metastable cubic phase in accordance with the Fm3 space group. For the trigonal phase, instead, a partial symmetry break due to Ge/Sb mixed anion layers is observed. By studying the crystallization process upon annealing with both the techniques, we identify temperature regions corresponding to the occurrence of different phases as well as the transition from one phase to the next. Activation energies of 0.43 eV and 0.08 eV for the electron conduction are obtained for both cubic and trigonal phases, respectively. In addition a metal-insulator transition is clearly identified to occur at the onset of the transition between the disordered and the ordered cubic phase.

3.
Phys Rev Lett ; 109(14): 147401, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23083282

RESUMO

The lack of structural symmetry which usually characterizes semiconductor quantum dots lifts the energetic degeneracy of the bright excitonic states and hampers severely their use as high-fidelity sources of entangled photons. We demonstrate experimentally and theoretically that it is always possible to restore the excitonic degeneracy by the simultaneous application of large strain and electric fields. This is achieved by using one external perturbation to align the polarization of the exciton emission along the axis of the second perturbation, which then erases completely the energy splitting of the states. This result, which holds for any quantum dot structure, highlights the potential of combining complementary external fields to create artificial atoms meeting the stringent requirements posed by scalable semiconductor-based quantum technology.

4.
Adv Mater ; 24(20): 2668-72, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22499442

RESUMO

We integrate resonant-cavity light-emitting diodes containing quantum dots onto substrates with giant piezoelectric response. Via strain, the energy of the photons emitted by the diode can be precisely controlled during electrical injection over a spectral range larger than 20 meV. Simultaneously, the exciton fine-structure-splitting and the biexciton binding energy can be tuned to the values required for entangled photon generation.


Assuntos
Membranas Artificiais , Pontos Quânticos , Semicondutores , Fótons
5.
Nanotechnology ; 22(19): 195602, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21430313

RESUMO

The evolution of InAs and In(0.85)Mn(0.15)As quantum dots grown at 270 °C is studied as a function of coverage. We show that, in contrast to what occurs at high temperature, the two-dimensional to three-dimensional transition is not abrupt but rather slow. This is due to the finding that part of the deposited material also contributes to the wetting layer growth after quantum dot formation. This aspect is particularly accentuated in In(0.85)Mn(0.15)As deposition. The Voronoi area analysis reveals a significant spatial correlation between islands.


Assuntos
Arsênio/química , Arsenicais/química , Índio/química , Manganês/química , Nanotecnologia/métodos , Pontos Quânticos , Temperatura Baixa , Difusão , Cinética , Microscopia de Força Atômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA