Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(20): 20969-20980, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115818

RESUMO

In this study, Jordanian diatomaceous earth (JDA) and commercial diatomaceous earth (standard diatomaceous earth, SDA) were used for adsorption of samarium (Sm)(III) and neodymium (Nd)(III) ions from aqueous solutions using batch technique as a function of initial concentration of metal ions, adsorbent dosage, ionic strength, initial pH solution, contact time, and temperature. Both adsorbents were characterized by Fourier transform infrared (FTIR), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area, and cation exchange capacity (CEC). Maximum metal ion uptake was observed after 100 min of agitation, and the uptake has decreased with increasing temperature and reached a maximum at pH ≈ 5. Different types of adsorption isotherms and kinetic models were used to describe the Nd(III) and Sm(III) ion adsorption. The experimental data fitted within the following isotherms in the order Langmuir > Dubinin-Radushkevich (DR) > Freundlich and the pseudo-second-order kinetic model based on their coefficient of determination (R2), chi-square (χ2), and error function (Ferror%) values. Maximum adsorption uptakes, according to the Langmuir model, were obtained as 188.679 mg/g and 185.185 mg/g for Sm(III) and 169.492 mg/g and 149.254 mg/g for Nd(III) by JDA and SDA, respectively. The results of thermodynamic parameters showed that the adsorption of Sm(III) and Nd(III) ions onto JDA and SDA is a feasible, spontaneous, exothermic, and entropy driven. The best recovery for Sm(III) and Nd(III) was obtained when the 0.05 M EDTA + 0.05 M H3PO4 mixture was used as an eluent.


Assuntos
Terra de Diatomáceas/metabolismo , Neodímio/isolamento & purificação , Samário/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Terra de Diatomáceas/classificação , Concentração de Íons de Hidrogênio , Cinética , Neodímio/metabolismo , Samário/metabolismo , Soluções , Temperatura , Termodinâmica , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA