Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(4): 1900-1913, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36607270

RESUMO

Electronic devices featuring biomimetic behaviour as electronic synapses and neurons have motivated the emergence of a new era in information and humanoid robotics technologies. In the human body, a nociceptor is a unique sensory neuron receptor that is capable of detecting harmful signals, leading to the central nervous system initiating a motor response. Herein, a nickel-doped zinc oxide (NZO)/Au based memristor is fabricated for the first time and characterized for artificial nociceptor application. For this, the introduction of a nickel-doped zinc oxide (NZO) layer between P++-Si and Au electrodes is used to eliminate the surface effects of the NZO layer, resulting in improved volatile threshold switching performance. Depending on the intensity, duration, and repetition rate of the external stimuli, this newly created memristor exhibits various critical nociceptive functions, including threshold, relaxation, allodynia, and hyperalgesia. The electron trapping/detrapping to/from the traps in the NZO layer is responsible for these nociceptive properties. This kind of NZO-based device produces a multifunctional nociceptor performance that is essential for applications in artificial intelligence systems, such as neural integrated devices with nanometer-sized features.


Assuntos
Óxido de Zinco , Humanos , Zinco , Inteligência Artificial , Níquel
2.
RSC Adv ; 12(55): 36126-36137, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36545077

RESUMO

The co-precipitation approach was utilized to experimentally synthesize ZnO, Zn0.96Gd0.04O and Zn0.96-x Gd0.04Co x O (Co = 0, 0.01, 0.03, 0.04) diluted magnetic semiconductor nanotubes. The influence of gadolinium and cobalt doping on the microstructure, morphology, and optical characteristics of ZnO was investigated, and the Gd doping and Co co-doping of the host ZnO was verified by XRD and EDX. The structural investigation revealed that the addition of gadolinium and cobalt to ZnO reduced crystallinity while maintaining the preferred orientation. The SEM study uncovered that the gadolinium and cobalt dopants did not affect the morphology of the produced nanotubes, which is further confirmed through TEM. In the UV-vis spectra, no defect-related absorption peaks were found. By raising the co-doping content, the crystalline phase of the doped samples was enhanced. It was discovered that the dielectric response and the a.c. electrical conductivity display a significant dependent relationship. With the decreasing frequency and increasing Co co-dopant concentration, the ε r and ε'' values decreased. It was also discovered that the ε r, ε'', and a.c. electrical conductivity increased when doping was present. Above room temperature, co-doped ZnO nanotubes exhibited ferromagnetic properties. The ferromagnetic behaviour increased as Gd (0.03) doping increased. Increasing the Co content decreased the ferromagnetic behaviour. It was observed that Zn0.96-x Gd0.04Co x O (x = 0.03) nanotubes exhibit superior electrical conductivity, magnetic and dielectric characteristics compared to pure ZnO. This high ferromagnetism is typically a result of a magnetic semiconductor that has been diluted. In addition, these nanoparticles are utilized to design spintronic-based applications in the form of thin-films.

3.
RSC Adv ; 12(25): 15767-15774, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35685706

RESUMO

Cobalt-doped TiO2-based diluted magnetic semiconductors were successfully synthesized using a co-precipitation method. The X-ray diffraction study of all the samples showed good crystallinity, matching the standard tetragonal anatase phase. The X-ray diffraction peaks of the cobalt-doped sample slightly shifted towards a lower angle showing the decrease in particle size and distortion in the unit cell due to cobalt incorporation in the lattice of TiO2. Transmission electron microscopy showed the spherical morphology of the TiO2 nanoparticles, which decreased with Co-doping. The optical characteristics and band gap investigation revealed that defects and oxygen vacancies resulted in lower band gap energy and maximum absorption in the visible region. Dielectric measurements showed enhancement in the dielectric constant and AC conductivity, while the dielectric loss decreased. The enhancement in the dielectric properties was attributed to interfacial polarization and charge carrier hopping between Co and Ti ions. The magnetic properties displayed that pure TiO2 was diamagnetic, while Co-doped TiO2 showed a ferromagnetic response at 300 K. The visible light-driven photocatalytic activity showed an improvement for Co-doped TiO2. Our results demonstrate that Co-doping can be used to tune the physical properties and photocatalytic activity of TiO2 for possible spin-based electronics, optoelectronics, and photo-degradation applications.

4.
RSC Adv ; 12(21): 13456-13463, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35527731

RESUMO

The hydrothermal method was used to create dilute magnetic semiconductor nanoparticles of Zn1-x Co x O (x = 0, 0.01, 0.05, 0.09). The effect of cobalt doping on the microstructure, morphological and optical properties of Zn1-x Co x O was also studied and the Co doping to host ZnO was confirmed from XRD and EDX analysis. The structural analysis showed that doping of cobalt into ZnO decreased the crystallinity, but the preferred orientation didn't change. SEM analysis revealed that the cobalt dopant did not have a strong influence on the shape of the synthesized nanoparticles. No defect-related absorption peaks were observed in the UV-Vis spectra. The crystallinity of the doped samples was improved by high growth temperature and long growth time. Ferromagnetic behavior above room temperature was detected in co-doped ZnO nanoparticles. The ferromagnetic behavior increased with increasing Co (up to x = 0.05) doping. The ferromagnetic behavior declined when the Co content was further increased. Related research shows that doped ZnO nanoparticles have better dielectric, electrical conductivity, and magnetic properties than pure ZnO. This high ferromagnetism is usually a response reported for dilute magnetic semiconductors. These semiconductor nanoparticles were further used to designed spintronic based applications.

5.
Langmuir ; 37(11): 3248-3260, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33683133

RESUMO

An alternative approach to classical surface plasmon resonance spectroscopy is dielectric-loaded waveguide (DLWG) spectroscopy, widely used in the past decades to investigate bio-interaction kinetics. Despite their wide application, a successful and clear approach to use the DLWGs for the one-step simultaneous determination of both the thickness and refractive index of organic thin films is absent in the literature. We propose here, for the first time, an experimental protocol based on the multimodal nature of DLWGs to be followed in order to evaluate the optical constants and thickness of transparent thin films with a unique measurement. The proposed method is general and can be applied to every class of transparent organic materials, with a resolution and accuracy which depend on the nature of the external medium (gaseous or liquid), the geometrical characteristics of the DLWG, and the values of both the thickness and dielectric constant of the thin film. From the experimental point of view, the method is demonstrated in a nitrogen environment with an accuracy of about 3%, for the special case of electroluminescent thin films of Eu3+ß-diketonate complexes, with an average thickness of about 20 nm. The high value of the refractive index measured for the thin film with the Eu(btfa)3(t-bpete) complex was confirmed by the use of a spectroscopic model based on the Judd-Ofelt theory, in which the magnetic dipole transition 5D0 → 7F1 (Eu3+) for similar films containing Eu3+ complexes is taken as a reference. The DLWGs are finally applied to control the refractive index changes of the organic thin films under UVA irradiation, with potential applications in dosimetry and monitoring light-induced transformation in organic thin films.

6.
Sensors (Basel) ; 19(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704098

RESUMO

The resonant wave modes in monomodal and multimodal planar Surface Plasmon Resonance (SPR) sensors and their response to a bidimensional array of gold nanoparticles (AuNPs) are analyzed both theoretically and experimentally, to investigate the parameters that rule the correct nanoparticle counting in the emerging metal nanoparticle-amplified surface plasmon resonance (PA-SPR) spectroscopy. With numerical simulations based on the Finite Element Method (FEM), we evaluate the error performed in the determination of the surface density of nanoparticles σ when the Maxwell-Garnett effective medium theory is used for fast data processing of the SPR reflectivity curves upon nanoparticle detection. The deviation increases directly with the manifestations of non-negligible scattering cross-section of the single nanoparticle, dipole-dipole interactions between adjacent AuNPs and dipolar interactions with the metal substrate. Near field simulations show clearly the set-up of dipolar interactions when the dielectric thickness is smaller than 10 nm and confirm that the anomalous dispersion usually observed experimentally is due to the failure of the effective medium theories. Using citrate stabilized AuNPs with a nominal diameter of about 15 nm, we demonstrate experimentally that Dielectric Loaded Waveguides (DLWGs) can be used as accurate nanocounters in the range of surface density between 20 and 200 NP/µm², opening the way to the use of PA-SPR spectroscopy on systems mimicking the physiological cell membranes on SiO2 supports.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Ácido Cítrico/química , Análise de Elementos Finitos , Ouro/química , Tamanho da Partícula , Dióxido de Silício/química
7.
Opt Express ; 27(3): 3200-3216, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732345

RESUMO

We study the potentialities of a two-color Surface Plasmon Resonance (SPR) spectroscopy nanosizer by monitoring the assembling of a colloidal dispersion of citrate stabilized gold nanoparticles (AuNPs) on SiO2 surface. When the AuNPs/water composite's optical density layer is negligible and the electron mean-free path limitation is taken into account in the AuNPs' dielectric constant;s formulation, the surface density σ of the nanoparticle array and the statistical mean size of the nanoparticles can be straightly determined by using two-color SPR spectroscopy in the context of Maxwell's Garnett theory. The optical method, demonstrated experimentally for AuNPs with a nominal mean diameter of 15 nm, can, theoretically, be extended to bigger nanoparticles, based on a simple scaling relation between the extinction cross section of the single nanoparticle σext and the surface density σ. The experimental results, comparable to those obtained by AFM, transmission electron microscopy and dynamic light scattering technique, establish a novel insight on the SPR spectroscopy's potential to accurately characterize nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA