Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Biol Macromol ; 266(Pt 2): 131339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574925

RESUMO

The AcPase exhibits a specific activity of 31.32 U/mg of protein with a 728-fold purification, and the yield of the enzyme is raised to 3.15 %. The Zn2+-dependent AcPase showed a purification factor of 1.34 specific activity of 14 U/mg of proteins and a total recovery of 5.14. The SDS-PAGE showed a single band corresponding to a molecular weight of 18 kDa of AcPase and 29 kDa of Zn2+-dependent AcPase. The AcPase enzyme has shown a wide range of substrate specificity for p-NPP, phenyl phosphate and FMN, while in the case of ZnAcPase α and ß-Naphthyl phosphate and p-NPP were proved to be superior substrates. The divalent metal ions like Mg2+, Mn2+, and Ca2+ increased the activity, while other substrates decreased the enzyme activity. The Km (0.14 mM) and Vmax (21 µmol/min/mg) values of AcPase were higher than those of Zn2+-AcPase (Km = 0.5 mM; Vmax = 9.7 µmol/min/mg). The Zn2+ ions activate the Zn2+-AcPase while Fe3+, Al3+, Pb2+, and Hg2+ showed inhibition on enzyme activity. Molybdate, vanadate and phosphate were found to be competitive inhibitors of AcPase with Ki values 316 µM, 185 µM, and 1.6 mM, while in Zn2+-AcPase tartrate and phosphate also showed competitive inhibition with Ki values 3 mM and 0.5 mM respectively.


Assuntos
Fosfatase Ácida , Encéfalo , Galinhas , Zinco , Animais , Zinco/química , Especificidade por Substrato , Fosfatase Ácida/metabolismo , Fosfatase Ácida/química , Fosfatase Ácida/isolamento & purificação , Encéfalo/enzimologia , Cinética , Concentração de Íons de Hidrogênio , Peso Molecular
2.
Int J Biol Macromol ; 265(Pt 2): 131067, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521328

RESUMO

Researchers are consistently investigating novel and distinctive methods and materials that are compatible for human life and environmental conditions This study aimed to synthesize gold nanoparticles (ALPs-AuNPs) using for the first time an alkaline protease (ALPs) derived from Phalaris minor seed extract. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of ALPs-AuNPs. The nanoparticles' ability to degrade methylene blue (MB) through photocatalysis under visible light irradiation was assessed. The findings demonstrated that ALPs-AuNPs exhibited remarkable efficacy by destroying 100 % of MB within a mere 30-minute irradiation period. In addition, the ALPs-AuNPs demonstrated remarkable effectiveness in inhibiting the growth of gram-positive (S. aureus) and gram-negative (E. coli) bacteria. The inhibition zones examined against the two bacterial strains were 23(±0.3) mm and 19(±0.4); 13(±0.3) mm and 11(±0.5) mm under light and dark conditions respectively. The ALPs-AuNPs exhibited significant antioxidant activity by effectively scavenging 88 % of stable and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. As a result, the findings demonstrated that the environmentally friendly ALPs-AuNPs showed a strong potential for MB degradation and bacterial pathogen treatment.


Assuntos
Proteínas de Bactérias , Endopeptidases , Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Escherichia coli , Staphylococcus aureus/metabolismo , Bactérias , Extratos Vegetais/química
3.
Int J Biol Macromol ; 266(Pt 1): 131155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547944

RESUMO

Here, we reported the process for the production of Pd/CuO/ZnO nanocomposite utilizing alkaline protease from Phalaris minor seed extract, which is a unique, effective biogenic approach. Alkaline protease performed a crucial part in the reduction, capping and stabilization of Pd/CuO/ZnO nanocomposites. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of Pd/CuO/ZnO nanocomposites. The notable performance of the synthesized nanocomposite as a photocatalyst and an antibacterial disinfectant was astonishing. The Pd/CuO/ZnO nanocrystals showed considerable photocatalytic activity by eliminating 99 % of the methylene blue (MB) in <30 min of exposure. After three test cycles, the nanocatalyst demonstrated exceptional reliability as a photocatalyst. The nanocomposite was also discovered to be an effective antibacterial agent, with zones of inhibitory activity for Staphylococcus aureus and Escherichia coli bacteria of 30(±0.2), 27(±0.3), 22(±0.2), and 21(±0.3) mm, respectively, in both light and dark conditions. Moreover, the Pd/CuO/ZnO nanocomposites showed strong antioxidant activity by efficiently scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The photocatalytic, antibacterial and antioxidative performance of Pd, CuO, ZnO, and CuO/ZnO were also assessed for the sake of comparison. This work shows that biogenic nanocomposites may be employed as a feasible alternative photocatalyst for the decomposition of dyes in waste water as well as a sustainable antibacterial agent.


Assuntos
Antibacterianos , Cobre , Endopeptidases , Nanocompostos , Paládio , Staphylococcus aureus , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Nanocompostos/química , Cobre/química , Catálise , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Paládio/química , Staphylococcus aureus/efeitos dos fármacos , Endopeptidases/química , Escherichia coli/efeitos dos fármacos , Proteínas de Bactérias/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Processos Fotoquímicos
4.
Int J Biol Macromol ; 259(Pt 2): 129190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185304

RESUMO

Urease is one of the most significant enzymes in the industry. The objective of this research was to isolate and partially purify urease from Vicia sativa seeds with urease characterization. With a 6.4 % yield, the purification fold was 9.0. By using chromatography, it was determined that the isolated urease had a molecular weight of 55 kDa. The maximum urease activity was found following a 60-s incubation period at 40 °C and pH 8. The activity of urease was significantly boosted by a mean of calcium, barium, DL-dithiothreitol, Na2EDTA, and citrate (16.9, 26.6, 18.6, 13.6, and 31 %), respectively. But nickel and mercury caused inhibitory effects and completely inhibited urease activity, indicating the presence of a thiol (-SH) group in the enzyme active site. The Arrhenius plot was used to analyze the thermodynamic constants of activation, Ea, ΔH*, ΔG*, and ΔS*. The results showed that the values were 30 kJ/mol, 93.14 kJ/mol, 107.17 kJ/mol/K, and -40.80 J/mol/K, respectively. The significance of urease extraction from various sources may contribute to our understanding of the metabolism of urea in plants. The current report has novelty as it explained for the first time the kinetics and thermodynamics of hydrolysis of urea and inactivation of urease from V. sativa seeds.


Assuntos
Urease , Vicia sativa , Urease/metabolismo , Vicia sativa/metabolismo , Termodinâmica , Sementes/metabolismo , Ureia/metabolismo , Cinética , Concentração de Íons de Hidrogênio
5.
Plants (Basel) ; 12(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375867

RESUMO

The growth and productivity of wheat crops depend on the availability of essential nutrients such as zinc (Zn) and potassium (K2O), which play critical roles in the plant's physiological and biochemical processes. This study aimed to investigate the synergizing effect of zinc and potassium fertilizers on uptake of both the nutrients, growth, yield, and quality of the Hashim-08 cultivar and local landrace, during the 2019-2020 growing season in Dera Ismail Khan, Pakistan. The experiment was designed using a split plot pattern in a randomized complete pattern, with main plots for the wheat cultivars and subplots for the fertilizer treatments. Results indicated that both cultivars responded positively to the fertilizer treatments, with the local landrace exhibiting maximum plant height and biological yield, and improved Hashim-08, showing increased agronomic parameters, including the number of tillers and grains and spike length. Application of Zn and K2O fertilizers significantly enhanced agronomic parameters, such as the number of grains per plant, spike length, thousand-grain weight, grain yield, harvest index, Zn uptake of grain, dry gluten content, and grain moisture content, while crude protein and grain potassium remained relatively unchanged. The soil's Zn and K content dynamics were found to vary among treatments. In conclusion, the combined application of Zn and K2O fertilizers proved beneficial in improving the growth, yield, and quality of wheat crops, with the local landrace exhibiting lower grain yield but greater Zn uptake through fertilizer application. The study's findings highlight that the local landrace showed good response to the growth and qualitative parameter when compared with the Hashim-08 cultivar. Additionally, the combined application of Zn and K showed a positive relation in terms of nutrient uptake and soil Zn and K content.

6.
Int J Biol Macromol ; 242(Pt 2): 124809, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178877

RESUMO

Herein, we described for the first time, an efficient biogenic synthesis of APTs-AgNPs using acid protease from Melilotus indicus leaf extract. The acid protease (APTs) has an essential role in the stabilization, reduction, and capping of APTs-AgNPs. The crystalline nature, size, and surface morphology of APTs-AgNPs were examined using different techniques such as XRD, UV, FTIR, SEM, EDS, HRTEM, and DLS analysis. The generated APTs-AgNPs demonstrated notable performance as dual functionality (photocatalyst and antibacterial disinfection). By destroying 91 % of methylene blue (MB) in <90 min of exposure, APTs-AgNPs demonstrated remarkable photocatalytic activity. APTs-AgNPs also showed remarkable stability as a photocatalyst after five test cycles. Furthermore, the APTs-AgNPs was found to be a potent antibacterial agent with inhibition zones of 30(±0.5 mm), 27(±0.4 mm), 16(±0.1 mm), and 19(±0.7 mm) against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively, under both light and dark conditions. Furthermore, APTs-AgNPs effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, demonstrating their potent antioxidant activity. The outcomes of this study thus demonstrates the dual functionality of APTs-AgNPs produced using the biogenic approach method as a photocatalyst and an antibacterial agent for effective microbial and environmental control.


Assuntos
Nanopartículas Metálicas , Peptídeo Hidrolases , Peptídeo Hidrolases/farmacologia , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Endopeptidases/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana
7.
Curr Probl Cardiol ; 48(9): 101821, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37211304

RESUMO

The achievement of genome-wide association studies (GWAS) has rapidly progressed our understanding of the etiology of coronary artery disease (CAD). It unlocks new strategies to strengthen the stalling of CAD drug development. In this review, we highlighted the recent drawbacks, mainly pointing out those involved in identifying causal genes and interpreting the connections between disease pathology and risk variants. We also benchmark the novel insights into the biological mechanism behind the disease primarily based on outcomes of GWAS. Furthermore, we also shed light on the successful discovery of novel treatment targets by introducing various layers of "omics" data and applying systems genetics strategies. Lastly, we discuss in-depth the significance of precision medicine that is helpful to improve through GWAS analysis in cardiovascular research.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/terapia , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Fatores de Risco , Medicina de Precisão
8.
Int J Biol Macromol ; 233: 123544, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754264

RESUMO

The present work aims to purify and perform a preliminary analysis on a thermostable serine alkaline protease from a recently identified P. minor. The enzyme was purified 2.7-fold with a 12.4 % recovery using Sephadex G-100 chromatography, DEAE-cellulose, and ammonium sulphate precipitation. The isolated enzyme has a specific activity of 473 U/mg. The purified protease had a molecular mass of 29 kDa, and just one band was seen, which matched the band obtained using SDS-PAGE. High thermostability was demonstrated by the enzymes, which had half-lives of 31.79 and 6.0 min (a 5.3-fold improvement), enthalpies of denaturation (ΔH°) of 119.53 and 119.35 KJ mol-1, entropies of denaturation (ΔS°) of 32.96 and 41.11 J/mol·K, and free energies of denaturation (ΔG°) of 108.87 and 105.58 KJ mol-1 for the protease enzyme. Studies on the folding and stability of alkaline proteases are important since their use in biotechnology requires that they operate in settings of extreme pH and temperature. According to the kinetic and thermodynamic properties, the protease produced by P. minor is superior to that produced by other sources and previously described plants, and it might find utility in a variety of industrial fields.


Assuntos
Phalaris , Endopeptidases , Temperatura , Peptídeo Hidrolases/metabolismo , Sementes/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Cinética
9.
Curr Probl Cardiol ; 48(7): 101661, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36822564

RESUMO

Coronary artery disease (CAD) is a serious health problem that causes a considerable number of mortality in a number of affluent nations throughout the world. The estimated death encountered in many developed countries includes including Pakistan, reached 111,367 and accounted for 9.87% of all deaths, despite the mortality rate being around 7.2 million deaths per year, or 12% of all estimated deaths accounted annually around the globe, with improved health systems. Atherosclerosis progressing causes the coronary arteries to become partially or completely blocked, which results in CAD. Additionally, smoking, diabetes mellitus, homocystinuria, hypertension, obesity, hyperlipidemia, and psychological stress are risk factors for CAD. The symptoms of CAD include angina which is described as a burning, pain or discomfort in the chest, nausea, weakness, shortness of breath, lightheadedness, and pain or discomfort in the arms or shoulders. Atherosclerosis and thrombosis are the 2 pathophysiological pathways most frequently involved in acute coronary syndrome (ACS). Asymptomatic plaque disruption, plaque bleeding, symptomatic coronary blockage, and myocardial infarction are the prognoses for CAD. In this review, we will focus on medicated therapy which is being employed for the relief of angina linked with CAD including antiplatelet medicines, nitrates, calcium antagonists, blockers, catheterization, and the frequency of recanalized infarct-related arteries in patients with acute anterior wall myocardial infarction (AWMI). Furthermore, we have also enlightened the importance of biomarkers that are helpful in the diagnosis and management of CAD.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/terapia , Angina Pectoris , Fatores de Risco , Biomarcadores , Cateterismo
10.
Int J Biol Macromol ; 230: 123217, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634806

RESUMO

A thermostable acid protease from M. indicus leaves was purified 10-fold using a 4-step protocol. We were able to isolate a purified protease fraction with a molecular weight of 50 kDa and exhibited maximal protease activity at pH 4.0 and 40 °C. Structural analysis revealed that the protease is monomeric and non-glycosylated. The addition of epoxy monocarboxylic acid, iodoacetic acid, and dimethyl sulfoxide significantly reduced protease activity while dramatically increasing the inhibition of Mn2+, Fe2+, and Cu2+. The activation energy of the hydrolysis reaction (33.33 kJ mol-1) and activation energy (Ed = 105 kJ mol-1), the standard enthalpy variation of reversible protease unfolding (2.58 kJ/mol) were calculated after activity measurements at various temperatures. Thermal inactivation of the pure enzyme followed first-order kinetics. The half-life (t1/2) of the pure enzyme at 50 °C, 60 °C, and 70 °C was 385, 231, and 154 min, respectively. Thermodynamic parameters (entropy and enthalpy) suggested that the protease was highly thermostable. This is the first report on the thermodynamic parameters of proteases produced by M. indicus. The novel protease appears to be particularly thermostable and may be important for industrial applications based on these thermodynamic properties.


Assuntos
Melilotus , Peptídeo Hidrolases , Endopeptidases/química , Termodinâmica , Temperatura , Cinética , Concentração de Íons de Hidrogênio , Estabilidade Enzimática
11.
J Environ Manage ; 328: 116963, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516710

RESUMO

Since the green revolution, excessive utilization of chemical fertilizers has become prevalent due to concerns about the integrity of food production for the growing population. This indiscriminate use harms the fertility of the soil, especially in sandy soils where nutrient leaching, particularly nitrogen, results in yield losses as well as environmental and health problems. A pot experiment was carried out at Gomal University, Pakistan, in March 2022 to assess the nitrogen use efficiency, nitrogen uptake, and yield of okra. There were nine treatments with four replicates and the treatment combinations were established using a completely randomized design (CRD). Urea coated with agrotain (urease inhibitor) was applied each at 120 and 84 kg N ha-1 in 2 or 3 splits. Urea at 84 kg N ha-1 was also used in combination with Farmyard manure (FYM) and compared against the control (100% recommended urea). Obtained results showed that inhibitor-treated urea significantly increased soil concentrations of NO3-N and NH4-N over non-inhibitor-treated urea. The highest NO3-N was recorded where urea alone and urea treated with 3 L (3 L) agrotain was applied to 100%. The highest ammonical-N was recorded, where 70% urea treated with 3 L agrotain was applied. Urea, in combination with FYM, significantly increased the organic matter. Electrical conductivity in extract (ECe), and pH of the soil. The improvement in yield with inhibitor was at par with 70% and 100% urea. The highest improvement of 16% in fruit yield and 7.29% nitrogen use efficiency was obtained in the treatment receiving 120 kg N ha-1 treated with 3 L agrotain compared with non-inhibitor urea. The 2nd highest improvement of 10% in fruit yield on account of increased fruit length, stem diameter, and number of fruits, and 5.97% nitrogen use efficiency (NUE) was obtained in treatment receiving 120 kg N ha-1 in combination with FYM in comparison to control. These results suggested that the use of N inhibitor significantly increased the okra fruit yield on account of enhancing ammonical-N and increased N use efficiency.


Assuntos
Abelmoschus , Solo , Humanos , Agricultura/métodos , Esterco , Nitrogênio/análise , Ureia , Produtos Agrícolas , Fertilizantes
12.
Curr Probl Cardiol ; 48(2): 101486, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336115

RESUMO

Cardiovascular disease (CVD) is a significant noncommunicable disease associated with high long-term mortality. In addition to more effective secondary therapies, the primary prevention of CVD has developed markedly in the past several years. This study aims to investigate the evidence and impact of reducing the threshold for primary CVD risk management to 10% over 10 years with "statin" therapy. To conduct research a systematic review utilizing 5 electronic database searches was completed for studies, analyzing the clinical effect of reducing the threshold of CVD risk to 10% over 10 years for primary prevention with statin therapy. The study included six (6) trials. Statin therapy was allocated to 31,018 participants. The mean age was 61 years and the mean follow-up was 4.6 years. The mean relative reduction in total cholesterol was 19% (from an average of), low-density lipoprotein cholesterol was 28.3% (from mmol/L to mmol/L) and triglycerides were 14.8% (from mmol/L to mmol/L). High-density lipoprotein cholesterol was observed to increase by a mean of 3.3% (from mmol/L to mmol/L). When examining all-cause mortality, statin therapy was associated with a 12% relative risk reduction compared with control, where overall rates were reduced from 1.4% to 1. % There is a 30% risk reduction in general major coronary events (from to %). There is a 19% risk reduction in general major cerebrovascular events with the statin group. While there is undoubtedly statistical evidence that supports the observation of the effectiveness of statin therapy for primary prevention, there is a risk that many hundreds of patients need to be treated to avoid a single adverse clinical outcome.


Assuntos
Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Pessoa de Meia-Idade , Doenças Cardiovasculares/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Triglicerídeos , LDL-Colesterol , Prevenção Primária
13.
Int J Biol Macromol ; 224: 20-31, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481331

RESUMO

Acid phosphatase (ACP) is a key enzyme in the regulation of phosphate feeding in plants. In this study, a new ACP from C. oxyacantha was isolated to homogeneity and biochemically described for the first time. Specific activity (283 nkat/mg) was found after 2573 times purification fold and (17 %) yield. Using SDS-PAGE under denaturing and nondenaturing conditions, ACP was isolated as a monomer with a molecular weight of 36 kDa. LC-MS/MS confirmed the presence of this band, suggesting that C. oxycantha ACP is a monomer. The enzyme could also hydrolyze orthophosphate monoester with an optimal pH of 5.0 and a temperature of 50 °C. Thermodynamic parameters were also determined (Ea, ΔH°, ΔG°, and ΔS°). ACP activity was further studied in the presence of cysteine, DTT, SDS, EDTA, ß-ME, Triton-X-100 H2O2, and PMSF. The enzyme had a Km of 0.167 mM and an Ea of 9 kcal/mol for p-nitrophenyl phosphate. The biochemical properties of the C. oxyacantha enzyme distinguish it from other plant acid phosphatases and give a basic understanding of ACP in C. oxyacantha. The results of this investigation also advance our knowledge about the biochemical significance of ACP in C. oxyacantha. Thermal stability over a wide pH and temperature range make it more suitable for use in harsh industrial environments. However, further structural and physiological studies are anticipated to completely comprehend its important aspects in oxyacantha species.


Assuntos
Fosfatase Ácida , Plântula , Fosfatase Ácida/química , Plântula/metabolismo , Cromatografia Líquida , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Termodinâmica , Temperatura , Fosfatos , Cinética , Peso Molecular , Especificidade por Substrato
14.
Curr Probl Cardiol ; 48(1): 101415, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36155199

RESUMO

Coronary artery disease (CAD) is a cardiovascular disease of the blood vessels that makes vessels, narrow and hardened and difficult to supply blood to the heart. The epidemiology of CAD disease is a common clinical syndrome of a global health priority and the burden is increasing at an alarming rate worldwide. The prevalence of CAD not only increases mortality, morbidity and worsens the patient quality of life but also puts a huge burden on the overall healthcare system. The novel risk factors include: cholesterol level, cigarette smoking, diabetics, obesity, and hypertension, respectively are the causative agents of CAD. Furthermore, the etiology of CAD is also a very complex process and several interrelated etiological factors are involved in the pathogenesis of CAD. The signs and symptoms of CAD appear like angina, heart failure, and dyspnea, myocardial infarction, and arrhythmia, respectively. The management and diagnosis of CAD include different types of medications that are used nowadays for the treatment of this disease. The highlights of the present review focused on stent technology and its useful applications. Finally, we also addressed the benefits of the stent, and its potential complications, effectiveness, indication, and contraindication that play a significant role in the recovery of CAD disease.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/etiologia , Qualidade de Vida , Stents , Fatores de Risco , Tecnologia
15.
Int J Biol Macromol ; 220: 1545-1555, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113598

RESUMO

The ß-galactosidase was extracted and purified from 100 g of C. arvensis seeds using a variety of protein purification procedures such as ammonium sulphate fractionation, gel filtration, and finally chromatography on a cationic ion exchanger. The effects of metal ions, kinetics parameters, and glycoprotein nature were determined, as well as the optimal pH and temperature of the purified enzyme. With a high specific activity (72 units/mg), ß-galactosidase was isolated to a 24-fold apparent electrophoretic homogeneity. The molecular mass of ß-galactosidase was determined as monomeric, which was further confirmed by SDS-PAGE and MALDI-TOF/MS analysis, with a 45 kDa molecular weight. The enzyme has a Km of 0.33 mM and a Vmax of 42 µmol/min Lactose in milk was reduced by 38.5 and 70 % after 4 h of incubation with ß-galactosidase from C. arvensis. The ß-galactosidase thermal inactivation kinetic parameters ΔH°, ΔS°, and ΔG° were calculated, indicating that the enzyme undergoes significant unfolding events during denaturation. Using ß-galactosidase from C. arvensis seeds, lactose hydrolysis in milk up to approx. 50 % was observed. The findings indicate the potential use of C. arvensis seeds for the production of low/delactosed milk for lactose-intolerant population.


Assuntos
Convolvulus , Lactose , Sulfato de Amônio , Animais , Convolvulus/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Lactose/metabolismo , Leite/química , Sementes/metabolismo , Temperatura , Termodinâmica , beta-Galactosidase/química
16.
Nanomaterials (Basel) ; 12(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407197

RESUMO

Noble metal nanoparticles (NMNPs) are viable alternative green sources compared to the chemical available methods in several approach like Food, medical, biotechnology, and textile industries. The biological synthesis of platinum nanoparticles (PtNPs), as a strong photocatalytic agent, has proved as more effective and safer method. In this study, PtNPs were synthesized at four different temperatures (25 °C, 50 °C, 70 °C, and 100 °C). PtNPs synthesized at 100 °C were smaller and exhibited spherical morphology with a high degree of dispersion. A series of physicochemical characterizations were applied to investigate the synthesis, particle size, crystalline nature, and surface morphology of PtNPs. The biosynthesized PtNPs were tested for the photodegradation of methylene blue (MB) under visible light irradiations. The results showed that PtNPs exhibited remarkable photocatalytic activity by degrading 98% of MB only in 40 min. The acid phosphatase mediated PtNPs showed strong bacterial inhibition efficiency against S. aureus and E. coli. Furthermore, it showed high antioxidant activity (88%) against 1,1-diphenyl-2-picryl-hydrazil (DPPH). In conclusion, this study provided an overview of the applications of PtNPs in food chemistry, biotechnology, and textile industries for the deterioration of the natural and synthetic dyes and its potential application in the suppression of pathogenic microbes of the biological systems. Thus, it could be used as a novel approach in the food microbiology, biomedical and environmental applications.

17.
Photodiagnosis Photodyn Ther ; 35: 102458, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34325079

RESUMO

Water pollution and bacterial resistance are universal problems. Drugs and protocols have been employed to deal with involved microbes and pollutants but these customary chemicals have many limitations. It is essential to produce new methods and materials to deal with these deleterious microbes. In the present contribution, highly efficient and stable nanocomposite of platinum activated zinc oxide was synthesized by a new plant extract and surfactant assisted protocol. The cetylpyridinium chloride was applied as surfactant to obtain high dispersion of spherical ZnO. The platinum ions were reduced on the ZnO surface by the use of Rhazya stricta plant extract. The prepared nanomaterial was used for photoinactivation of multidrug resistant bacterium Escherichia coli (E. coli). The synthesized nanomaterial showed strong E. coli inhibition efficiency in the presence of light and the observed diameter of zone of inhibition was 21 ±0.4. The effect of light on the inhibition of E.coli was studied by measuring the activated oxygen radicals inside the bacterium cell. The surface morphology of E.coli before and after treatment with Pt/ZnO was studied by SEM. Such effect was not observed in dark. The toxicity of the synthesized nanomaterials was also studied through haemolytic activity and the result shows that the nanomaterial prepared by the said method has very low toxicity. The photocatalytic degradation of methylene blue (MB) was also investigated in the presence of the synthesized nanomaterials. Effect of different parameters such as concentration of Pt/ZnO, Irradiation time and dye concentrations were also studied. An incredible photocatalytic deprivation of MB (98 %) was observed for Pt/ZnO nanocomposite as compared to individual Pt (48%) and ZnO (71%) nanoparticles after 5 minutes of irradiations. Further research is required to investigate the applications of Pt/ZnO nanocomposite.


Assuntos
Nanocompostos , Fotoquimioterapia , Óxido de Zinco , Catálise , Escherichia coli , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Tensoativos
18.
Int J Biol Macromol ; 168: 195-204, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33309659

RESUMO

Herein for the first time a novel acid phosphatase from the seedlings of Cichorium intybus was purified to homogeneity by using various chromatographic techniques (salt precipitation, ion exchange, size exclusion and affinity chromatography) and thermodynamically characterized. The molecular mass of purified enzyme (66 kDa) was determined by SDS-PAGE under denaturing and non-denaturing conditions and by gel-filtration confirmed as dimer of molecular mass 130 kDa. The Michaelis-Menten (Km) constant for -p-NPP (0.3 mM) and (7.6 µmol/min/mg) Vmax. The enzyme was competitively inhibited by phosphate, molybdate and vanadate. Phenyl phosphate, ɑ and ß-glycero-phosphate and-p-NPP were found to be good substrate. When temperature increased from (55 °C to 75 °C), the deactivation rate constant (kd) was increased (0.1 to 4.6 min-1) and half- life was decreased from 630 min to 15 min. Various thermal denaturation parameters; change in enthalpy (ΔH°), change in entropy (ΔS°) and change in free energy (ΔG°) were found 121.93 KJ·mol-1, 72.45 KJ·mol-1 and 98.08 KJ·mol-1 respectively, confirming that acid phosphatase undergoes a significant process of unfolding during deactivation. The biochemical properties of acid phosphatase from C. intybus on the behalf of biological activity and its relationship to pH variations, thermal deactivation and kinetics parameters provide an insight into its novel features.


Assuntos
Fosfatase Ácida/química , Fosfatase Ácida/isolamento & purificação , Cichorium intybus/química , Cichorium intybus/enzimologia , Cichorium intybus/metabolismo , Cromatografia em Gel/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Fosfatos , Plântula/química , Temperatura , Termodinâmica
19.
Int J Biol Macromol ; 165(Pt A): 1475-1481, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33058972

RESUMO

Herein acid phosphatase isoenzyme was extracted from the C. murale seedlings. The purification was accomplished by chromatographic techniques and passing through DEAE-cellulose and Sephadex G-100 column. The specific activity of acid phosphatase 5.75 U/mg of protein was obtained with 66 purification fold 15.8% yield and molecular mass was 29 kDa with very faint bands corresponding to 18 kDa and 14 kDa. The maximal activity at pH 5.0 and 50 °C best illustrated by first order kinetics. When temperature was raised (55 °C to 75 °C), the deactivation rate constant was increased from 0.001 to 0.014 min-1, while half-life was decreased from 693 to 49 min-1. The results of activity collected at different temperature were then used to estimate, activation energy of hydrolysis reaction (Ea = 47.59 kJmol-1). A high Z-value (18.86 °C min-1) was obtained indicating a less sensitivity towards temperatures. The residual activity examinations were carried out from 55 °C to 75 °C and assessing the Deactivation Energy (Ed 116.39 kJmol-1), Enthalpy change (ΔH° 113.55kJmol-1), Entropy change (ΔS° 110.33kJmol-1) and change in Gibbs free energy (ΔG° 10.02 kJmol-1). Taken together, thermodynamic parameters confirm the high stability of enzyme and show potential commercial applicability.


Assuntos
Fosfatase Ácida/química , Chenopodium/química , Cinética , Extratos Vegetais/química , Fosfatase Ácida/genética , Entropia , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Peso Molecular , Extratos Vegetais/farmacologia , Plântula/química , Temperatura , Termodinâmica
20.
J Proteome Res ; 19(8): 3201-3210, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32551656

RESUMO

The thermal stability of purified acid phosphatase from the germinating seedlings of Coronopus didymus (Jangli halon) was investigated by studying the impact of various thermodynamic parameters [t1/2, Ed, ΔH° (enthalpy change), ΔG° (free energy change), and ΔS° (entropy change)] of heat treatment in the temperature range of 55-75 °C. The thermal denaturation of acid phosphatase, assessed by loss in activity, was evidently followed by first-order kinetics, which varies with time and yield during the process of denaturation. The half-life of the enzyme was 693 min at 55 °C. The Ed (activation energy of denaturation) was calculated by the Arrhenius plot (30 kcal mol-1), and the Z-value was 17.3 °C. The various thermodynamic parameters studied were as follows: ΔH°, the change in enthalpy of inactivation, was 121.93 kJ mol-1 at 55 °C; ΔG°, the change in free energy of inactivation, was 110.65 kJ mol-1 at 55 °C; and ΔS°, the change in entropy of inactivation, was 34.39 J mol-1 k-1 at 55 °C. This suggests that acid phosphatase activity is thermostable to long heat treatment up to 60 °C.


Assuntos
Fosfatase Ácida , Brassicaceae/enzimologia , Proteínas de Plantas , Plântula , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Plântula/enzimologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA