Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Elife ; 112022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188101

RESUMO

The prevalence of multicellular organisms is due in part to their ability to form complex structures. How cells pack in these structures is a fundamental biophysical issue, underlying their functional properties. However, much remains unknown about how cell packing geometries arise, and how they are affected by random noise during growth - especially absent developmental programs. Here, we quantify the statistics of cellular neighborhoods of two different multicellular eukaryotes: lab-evolved 'snowflake' yeast and the green alga Volvox carteri. We find that despite large differences in cellular organization, the free space associated with individual cells in both organisms closely fits a modified gamma distribution, consistent with maximum entropy predictions originally developed for granular materials. This 'entropic' cellular packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even in the absence of developmental regulation. Together with simulations of diverse growth morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a general feature of multicellularity, arising from conserved statistics of cellular packing.


Assuntos
Evolução Molecular Direcionada , Volvox/genética , Leveduras/genética , Tamanho Celular , Filogenia , Volvox/citologia , Volvox/fisiologia , Leveduras/citologia , Leveduras/fisiologia
2.
BMC Biol ; 16(1): 145, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545356

RESUMO

BACKGROUND: Increases in biological complexity and the origins of life's hierarchical organization are described by the "major transitions" framework. A crucial component of this paradigm is that after the transition in complexity or organization, adaptation occurs primarily at the level of the new, higher-level unit. For collective-level adaptations to occur, though, collective-level traits-properties of the group, such as collective size-must be heritable. Since collective-level trait values are functions of lower-level trait values, collective-level heritability is related to particle-level heritability. However, the nature of this relationship has rarely been explored in the context of major transitions. RESULTS: We examine relationships between particle-level heritability and collective-level heritability for several functions that express collective-level trait values in terms of particle-level trait values. For clonal populations, when a collective-level trait value is a linear function of particle-level trait values and the number of particles per collective is fixed, the heritability of a collective-level trait is never less than that of the corresponding particle-level trait and is higher under most conditions. For more complicated functions, collective-level heritability is higher under most conditions, but can be lower when the environment experienced by collectives is heterogeneous. Within-genotype variation in collective size reduces collective-level heritability, but it can still exceed particle-level heritability when phenotypic variance among particles within collectives is large. These results hold for a diverse sample of biologically relevant traits. CONCLUSIONS: Rather than being an impediment to major transitions, we show that, under a wide range of conditions, the heritability of collective-level traits is actually higher than that of the corresponding particle-level traits. High levels of collective-level trait heritability thus arise "for free," with important implications not only for major transitions but for multilevel selection in general.


Assuntos
Evolução Biológica , Hereditariedade , Fenótipo , Modelos Genéticos , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA