Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(8): eabm7950, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196075

RESUMO

Simultaneous delivery of mRNA to multiple populations of antigen (Ag)-specific CD8+ T cells is challenging given the diversity of peptide epitopes and polymorphism of class I major histocompatibility complexes (MHCI). We developed Ag-presenting nanoparticles (APNs) for mRNA delivery using pMHCI molecules that were refolded with photocleavable peptides to allow rapid ligand exchange by UV light and site-specifically conjugated with a lipid tail for postinsertion into preformed mRNA lipid nanoparticles. Across different TCR transgenic mouse models (P14, OT-1, and Pmel), UV-exchanged APNs bound and transfected their cognate Ag-specific CD8+ T cells equivalent to APNs produced using conventionally refolded pMHCI molecules. In mice infected with PR8 influenza, multiplexed delivery of UV-exchanged APNs against three immunodominant epitopes led to ~50% transfection of a VHH mRNA reporter in cognate Ag-specific CD8+ T cells. Our data show that UV-mediated peptide exchange can be used to rapidly produce APNs for mRNA delivery to multiple populations of Ag-specific T cells in vivo.

2.
Nat Biomed Eng ; 5(11): 1348-1359, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34385695

RESUMO

Treating solid malignancies with chimeric antigen receptor (CAR) T cells typically results in poor responses. Immunomodulatory biologics delivered systemically can augment the cells' activity, but off-target toxicity narrows the therapeutic window. Here we show that the activity of intratumoural CAR T cells can be controlled photothermally via synthetic gene switches that trigger the expression of transgenes in response to mild temperature elevations (to 40-42 °C). In vitro, heating engineered primary human T cells for 15-30 min led to over 60-fold-higher expression of a reporter transgene without affecting the cells' proliferation, migration and cytotoxicity. In mice, CAR T cells photothermally heated via gold nanorods produced a transgene only within the tumours. In mouse models of adoptive transfer, the systemic delivery of CAR T cells followed by intratumoural production, under photothermal control, of an interleukin-15 superagonist or a bispecific T cell engager bearing an NKG2D receptor redirecting T cells against NKG2D ligands enhanced antitumour activity and mitigated antigen escape. Localized photothermal control of the activity of engineered T cells may enhance their safety and efficacy.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Deriva e Deslocamento Antigênicos , Linhagem Celular Tumoral , Fatores Imunológicos , Imunoterapia Adotiva , Camundongos , Receptores de Antígenos Quiméricos/genética , Linfócitos T
3.
Microbiol Resour Announc ; 9(45)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154009

RESUMO

Microbacteriophages Zada and Ioannes were isolated from soil and characterized. Genomes were then sequenced and annotated. This was done using the host bacterium Microbacterium foliorum Zada and Ioannes are both lytic phages with a Siphoviridae morphotype.

4.
Theranostics ; 10(8): 3652-3667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206114

RESUMO

Cell-based immunotherapies, such as T cells engineered with chimeric antigen receptors (CARs), have the potential to cure patients of disease otherwise refractory to conventional treatments. Early-on-treatment and long-term durability of patient responses depend critically on the ability to control the potency of adoptively transferred T cells, as overactivation can lead to complications like cytokine release syndrome, and immunosuppression can result in ineffective responses to therapy. Drugs or biologics (e.g., cytokines) that modulate immune activity are limited by mass transport barriers that reduce the local effective drug concentration, and lack site or target cell specificity that results in toxicity. Emerging technologies that enable site-targeted, remote control of key T cell functions - including proliferation, antigen-sensing, and target-cell killing - have the potential to increase treatment precision and safety profile. These technologies are broadly applicable to other immune cells to expand immune cell therapies across many cancers and diseases. In this review, we highlight the opportunities, challenges and the current state-of-the-art for remote control of synthetic immunity.


Assuntos
Citocinas/uso terapêutico , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Humanos , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA