Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(22): eaba2282, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32518824

RESUMO

In both natural and engineered systems, communication often occurs dynamically over networks ranging from highly structured grids to largely disordered graphs. To use, or comprehend the use of, networks as efficient communication media requires understanding of how they propagate and transform information in the face of noise. Here, we develop a framework that enables us to examine how network structure, noise, and interference between consecutive packets jointly determine transmission performance in complex networks governed by linear dynamics. Mathematically, normal networks, which can be decomposed into separate low-dimensional information channels, suffer greatly from readout noise. Most details of their wiring have no impact on transmission quality. Non-normal networks, however, can largely cancel the effect of noise by transiently amplifying select input dimensions while ignoring others, resulting in higher net information throughput. Our theory could inform the design of new communication networks, as well as the optimal use of existing ones.

2.
Sci Rep ; 10(1): 1774, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019963

RESUMO

While numerous studies have suggested that large natural, biological, social, and technological networks are fragile, convincing theories are still lacking to explain why natural evolution and human design have failed to optimize networks and avoid fragility. In this paper we provide analytical and numerical evidence that a tradeoff exists in networks with linear dynamics, according to which general measures of robustness and performance are in fact competitive features that cannot be simultaneously optimized. Our findings show that large networks can either be robust to variations of their weights and parameters, or efficient in responding to external stimuli, processing noise, or transmitting information across long distances. As illustrated in our numerical studies, this performance tradeoff seems agnostic to the specific application domain, and in fact it applies to simplified models of ecological, neuronal, and traffic networks.

3.
Neuroimage ; 200: 552-555, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31291605

RESUMO

In our recent article [1] published in this journal we provide quantitative evidence to show that there are warnings and caveats in the way Gu and collaborators [2] define controllability of brain networks and measure the contribution of each of its nodes. The comment by Pasqualetti et al. [3] confirms the need to go beyond the methodology and approach presented in Gu et al.'s original work. In fact, they recognize that "the source of confusion is due to the fact that assessing controllability via numerical analysis typically leads to ill-conditioned problems, and thus often generates results that are difficult to interpret". This is indeed the first warning we discussed in [1]: our work was not meant to prove that brain networks are not controllable from one node, rather we wished to highlight that the one node controllability framework and all consequent results were not properly justified based on the methodology presented in Gu et al. [2]. We used in our work the same method of Gu et al. not because we believe it is the best methodology, but because we extensively investigated it with the aim of replicating, testing, and extending their results. The warning and caveats we have proposed are the results of this investigation. Indeed, on the basis of our controllability analyses of multiple human brain networks datasets, we concluded: "The λmin(WK) are statistically compatible with zero and thus the associated controllability Gramian cannot be inverted1. These results show that it is not possible to infer one node controllability of the brain numerically". Hence both groups agree that one node controllability cannot be inferred numerically.


Assuntos
Encéfalo , Rede Nervosa , Humanos , Rede Nervosa/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-31327889

RESUMO

Reliable information processing is a hallmark of many physical and biological networked systems. In this paper, we propose a novel framework for modelling information transmission within a linear dynamical network. Information propagation is modelled by means of a digital communication protocol that takes into account the realistic phenomenon of inter-symbol interference. Building on this framework, we adopt Shannon information rate to quantify the amount of information that can be reliably sent over the network within a fixed time window. We investigate how the latter information metric is affected by the connectivity structure of the network. Here, we focus in particular on networks characterized by a normal adjacency matrix. We show that for such networks the maximum achievable information rate depends only on the spectrum of the adjacency matrix. We then provide numerical results suggesting that non-normal network architectures could benefit information transmission in our framework.

5.
Neuroimage ; 176: 83-91, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654874

RESUMO

A recent article by Gu et al. (Nat. Commun. 6, 2015) proposed to characterize brain networks, quantified using anatomical diffusion imaging, in terms of their "controllability", drawing on concepts and methods of control theory. They reported that brain activity is controllable from a single node, and that the topology of brain networks provides an explanation for the types of control roles that different regions play in the brain. In this work, we first briefly review the framework of control theory applied to complex networks. We then show contrasting results on brain controllability through the analysis of five different datasets and numerical simulations. We find that brain networks are not controllable (in a statistical significant way) by one single region. Additionally, we show that random null models, with no biological resemblance to brain network architecture, produce the same type of relationship observed by Gu et al. between the average/modal controllability and weighted degree. Finally, we find that resting state networks defined with fMRI cannot be attributed specific control roles. In summary, our study highlights some warning and caveats in the brain controllability framework.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Modelos Neurológicos , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA