Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 23(8): 1236-1245, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35882933

RESUMO

Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-ß-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-ß-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-ß-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.


Assuntos
Memória Imunológica , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Nat Immunol ; 22(9): 1140-1151, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426691

RESUMO

Tissue-resident memory T (TRM) cells are non-recirculating cells that exist throughout the body. Although TRM cells in various organs rely on common transcriptional networks to establish tissue residency, location-specific factors adapt these cells to their tissue of lodgment. Here we analyze TRM cell heterogeneity between organs and find that the different environments in which these cells differentiate dictate TRM cell function, durability and malleability. We find that unequal responsiveness to TGFß is a major driver of this diversity. Notably, dampened TGFß signaling results in CD103- TRM cells with increased proliferative potential, enhanced function and reduced longevity compared with their TGFß-responsive CD103+ TRM counterparts. Furthermore, whereas CD103- TRM cells readily modified their phenotype upon relocation, CD103+ TRM cells were comparatively resistant to transdifferentiation. Thus, despite common requirements for TRM cell development, tissue adaptation of these cells confers discrete functional properties such that TRM cells exist along a spectrum of differentiation potential that is governed by their local tissue microenvironment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Plasticidade Celular/imunologia , Microambiente Celular/imunologia , Memória Imunológica/imunologia , Animais , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/citologia , Feminino , Cadeias alfa de Integrinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/metabolismo
3.
Cell Rep ; 27(2): 442-454.e5, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970248

RESUMO

Neural tube defects (NTDs) are common birth defects in humans and show an unexplained female bias. Female mice lacking the tumor suppressor p53 display NTDs with incomplete penetrance. We found that the combined loss of pro-apoptotic BIM and p53 caused 100% penetrant, female-exclusive NTDs, which allowed us to investigate the female-specific functions of p53. We report that female p53-/- embryonic neural tube samples show fewer cells with inactive X chromosome markers Xist and H3K27me3 and a concomitant increase in biallelic expression of the X-linked genes, Huwe1 and Usp9x. Decreased Xist and increased X-linked gene expression was confirmed by RNA sequencing. Moreover, we found that p53 directly bound response elements in the X chromosome inactivation center (XIC). Together, these findings suggest p53 directly activates XIC genes, without which there is stochastic failure in X chromosome inactivation, and that X chromosome inactivation failure may underlie the female bias in neural tube closure defects.


Assuntos
Defeitos do Tubo Neural/genética , Proteína Supressora de Tumor p53/deficiência , Animais , Células-Tronco Embrionárias/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Defeitos do Tubo Neural/patologia , Gravidez , Processos Estocásticos , Proteína Supressora de Tumor p53/genética , Inativação do Cromossomo X
4.
Nature ; 560(7717): 253-257, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069049

RESUMO

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Assuntos
Benzenossulfonatos/farmacologia , Senescência Celular/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Hidrazinas/farmacologia , Linfoma/tratamento farmacológico , Linfoma/patologia , Sulfonamidas/farmacologia , Acetilação/efeitos dos fármacos , Animais , Benzenossulfonatos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Desenvolvimento de Medicamentos , Fibroblastos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/química , Histonas/metabolismo , Hidrazinas/uso terapêutico , Linfoma/enzimologia , Linfoma/genética , Lisina/química , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Sulfonamidas/uso terapêutico
5.
Science ; 354(6314): 909-912, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27856912

RESUMO

DNA methylation is prevalent in mammalian genomes and plays a central role in the epigenetic control of development. The mammalian DNA methylation machinery is thought to be composed of three DNA methyltransferase enzymes (DNMT1, DNMT3A, and DNMT3B) and one cofactor (DNMT3L). Here, we describe the discovery of Dnmt3C, a de novo DNA methyltransferase gene that evolved via a duplication of Dnmt3B in rodent genomes and was previously annotated as a pseudogene. We show that DNMT3C is the enzyme responsible for methylating the promoters of evolutionarily young retrotransposons in the male germ line and that this specialized activity is required for mouse fertility. DNMT3C reveals the plasticity of the mammalian DNA methylation system and expands the scope of the mechanisms involved in the epigenetic control of retrotransposons.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Epigênese Genética , Mutagênese/genética , Regiões Promotoras Genéticas , Retroelementos , Espermatogônias/enzimologia , Animais , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/classificação , DNA (Citosina-5-)-Metiltransferases/genética , Etilnitrosoureia/farmacologia , Técnicas de Inativação de Genes , Hipogonadismo/induzido quimicamente , Hipogonadismo/genética , Hipogonadismo/patologia , Masculino , Camundongos , Filogenia , Espermatogônias/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/patologia
7.
Genes Dev ; 29(12): 1256-70, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26109049

RESUMO

DNA methylation is essential for protecting the mammalian germline against transposons. When DNA methylation-based transposon control is defective, meiotic chromosome pairing is consistently impaired during spermatogenesis: How and why meiosis is vulnerable to transposon activity is unknown. Using two DNA methylation-deficient backgrounds, the Dnmt3L and Miwi2 mutant mice, we reveal that DNA methylation is largely dispensable for silencing transposons before meiosis onset. After this, it becomes crucial to back up to a developmentally programmed H3K9me2 loss. Massive retrotransposition does not occur following transposon derepression, but the meiotic chromatin landscape is profoundly affected. Indeed, H3K4me3 marks gained over transcriptionally active transposons correlate with formation of SPO11-dependent double-strand breaks and recruitment of the DMC1 repair enzyme in Dnmt3L(-/-) meiotic cells, whereas these features are normally exclusive to meiotic recombination hot spots. Here, we demonstrate that DNA methylation restrains transposons from adopting chromatin characteristics amenable to meiotic recombination, which we propose prevents the occurrence of erratic chromosomal events.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis/genética , Meiose/genética , Recombinação Genética/genética , Animais , Proteínas Argonautas/genética , DNA (Citosina-5-)-Metiltransferases/genética , Instabilidade Genômica/genética , Histonas/genética , Histonas/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Mutação , Espermatogênese/genética
8.
Nat Commun ; 5: 5795, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25503965

RESUMO

The Microrchidia (Morc) family of GHKL ATPases are present in a wide variety of prokaryotic and eukaryotic organisms but are of largely unknown function. Genetic screens in Arabidopsis thaliana have identified Morc genes as important repressors of transposons and other DNA-methylated and silent genes. MORC1-deficient mice were previously found to display male-specific germ cell loss and infertility. Here we show that MORC1 is responsible for transposon repression in the male germline in a pattern that is similar to that observed for germ cells deficient for the DNA methyltransferase homologue DNMT3L. Morc1 mutants show highly localized defects in the establishment of DNA methylation at specific classes of transposons, and this is associated with failed transposon silencing at these sites. Our results identify MORC1 as an important new regulator of the epigenetic landscape of male germ cells during the period of global de novo methylation.


Assuntos
Elementos de DNA Transponíveis , Epigênese Genética , Proteínas Nucleares/genética , Espermatozoides/metabolismo , Animais , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Embrião de Mamíferos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espermatozoides/citologia , Espermatozoides/crescimento & desenvolvimento , Fatores de Tempo
9.
Genes Dev ; 28(5): 463-78, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24589776

RESUMO

Many loci maintain parent-of-origin DNA methylation only briefly after fertilization during mammalian development: Whether this form of transient genomic imprinting can impact the early embryonic transcriptome or even have life-long consequences on genome regulation and possibly phenotypes is currently unknown. Here, we report a maternal germline differentially methylated region (DMR) at the mouse Gpr1/Zdbf2 (DBF-type zinc finger-containing protein 2) locus, which controls the paternal-specific expression of long isoforms of Zdbf2 (Liz) in the early embryo. This DMR loses parental specificity by gain of DNA methylation at implantation in the embryo but is maintained in extraembryonic tissues. As a consequence of this transient, tissue-specific maternal imprinting, Liz expression is restricted to the pluripotent embryo, extraembryonic tissues, and pluripotent male germ cells. We found that Liz potentially functions as both Zdbf2-coding RNA and cis-regulatory RNA. Importantly, Liz-mediated events allow a switch from maternal to paternal imprinted DNA methylation and from Liz to canonical Zdbf2 promoter use during embryonic differentiation, which are stably maintained through somatic life and conserved in humans. The Gpr1/Zdbf2 locus lacks classical imprinting histone modifications, but analysis of mutant embryonic stem cells reveals fine-tuned regulation of Zdbf2 dosage through DNA and H3K27 methylation interplay. Together, our work underlines the developmental and evolutionary need to ensure proper Liz/Zdbf2 dosage as a driving force for dynamic genomic imprinting at the Gpr1/Zdbf2 locus.


Assuntos
Metilação de DNA , Impressão Genômica/genética , Mamíferos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Humanos , Masculino , Mamíferos/embriologia , Mamíferos/metabolismo , Camundongos , Regiões Promotoras Genéticas , Espermatogênese/genética
10.
Hum Reprod ; 28(8): 2201-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674551

RESUMO

STUDY QUESTION: What is the consequence of Tex19.1 gene deletion in mice? SUMMARY ANSWER: The Tex19.1 gene is important in spermatogenesis and placenta-supported development. WHAT IS KNOWN ALREADY: Tex19.1 is expressed in embryonic stem (ES) cells, primordial germ cells (PGCs), placenta and adult gonads. Its invalidation in mice leads to a variable impairment in spermatogenesis and reduction of perinatal survival. STUDY DESIGN, SIZE, DURATION: We generated knock-out mice and ES cells and compared them with wild-type counterparts. The phenotype of the Tex19.1 knock-out mouse line was investigated during embryogenesis, fetal development and placentation as well as during adulthood. PARTICIPANTS/MATERIALS, SETTING, METHODS: We used a mouse model system to generate a mutant mouse line in which the Tex19.1 gene was deleted in the germline. We performed an extensive analysis of Tex19.1-deficient ES cells and assessed their in vivo differentiation potential by generating chimeric mice after injection of the ES cells into wild-type blastocysts. For mutant animals, a morphological characterization was performed for testes and ovaries and placenta. Finally, we characterized semen parameters of mutant animals and performed real-time RT-PCR for expression levels of retrotransposons in mutant testes and ES cells. MAIN RESULTS AND THE ROLE OF CHANCE: While Tex19.1 is not essential in ES cells, our study points out that it is important for spermatogenesis and for placenta-supported development. Furthermore, we observed an overexpression of the class II LTR-retrotransposon MMERVK10C in Tex19.1-deficient ES cells and testes. LIMITATIONS, REASONS FOR CAUTION: The Tex19.1 knock-out phenotype is variable with testis morphology ranging from severely altered (in sterile males) to almost indistinguishable compared with the control counterparts (in fertile males). This variability in the testis phenotype subsequently hampered the molecular analysis of mutant testes. Furthermore, these results were obtained in the mouse, which has a second isoform (i.e. Tex19.2), while other mammals possess only one Tex19 (e.g. in humans). WIDER IMPLICATIONS OF THE FINDINGS: The fact that one gene has a role in both placentation and spermatogenesis might open new ways of studying human pathologies that might link male fertility impairment and placenta-related pregnancy disorders. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM) (Grant Avenir), the Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche, the Université de Strasbourg, the Association Française contre les Myopathies (AFM) and the Fondation pour la Recherche Médicale (FRM) and Hôpitaux Universitaires de Strasbourg.The authors have nothing to disclose.


Assuntos
Desenvolvimento Fetal/genética , Proteínas Nucleares/fisiologia , Placentação/genética , Espermatogênese/genética , Animais , Blastocisto/citologia , Células-Tronco Embrionárias , Feminino , Camadas Germinativas/citologia , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Knockout , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Gravidez , Proteínas de Ligação a RNA , Testículo/patologia
11.
PLoS One ; 6(3): e18276, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21483837

RESUMO

Previous studies on the epigenetic regulator DNA methyltransferase 3-Like (DNMT3L), have demonstrated it is an essential regulator of paternal imprinting and early male meiosis. Dnmt3L is also a paternal effect gene, i.e., wild type offspring of heterozygous mutant sires display abnormal phenotypes suggesting the inheritance of aberrant epigenetic marks on the paternal chromosomes. In order to reveal the mechanisms underlying these paternal effects, we have assessed X chromosome meiotic compaction, XY chromosome aneuploidy rates and global transcription in meiotic and haploid germ cells from male mice heterozygous for Dnmt3L. XY bodies from Dnmt3L heterozygous males were significantly longer than those from wild types, and were associated with a three-fold increase in XY bearing sperm. Loss of a Dnmt3L allele resulted in deregulated expression of a large number of both X-linked and autosomal genes within meiotic cells, but more prominently in haploid germ cells. Data demonstrate that similar to embryonic stem cells, DNMT3L is involved in an auto-regulatory loop in germ cells wherein the loss of a Dnmt3L allele resulted in increased transcription from the remaining wild type allele. In contrast, however, within round spermatids, this auto-regulatory loop incorporated the alternative non-coding alternative transcripts. Consistent with the mRNA data, we have localized DNMT3L within spermatids and sperm and shown that the loss of a Dnmt3L allele results in a decreased DNMT3L content within sperm. These data demonstrate previously unrecognised roles for DNMT3L in late meiosis and in the transcriptional regulation of meiotic and post-meiotic germ cells. These data provide a potential mechanism for some cases of human Klinefelter's and Turner's syndromes.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Transcrição Gênica/genética , Cromossomo X/metabolismo , Alelos , Animais , Western Blotting , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , Feminino , Células Germinativas , Heterozigoto , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Meiose/genética , Meiose/fisiologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Espermátides/metabolismo , Espermatozoides/metabolismo , Cromossomo X/genética , Cromossomo Y/genética , Cromossomo Y/metabolismo
12.
Reproduction ; 136(2): 131-46, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18515312

RESUMO

In recent years, it has become increasingly clear that epigenetic regulation of gene expression is critical during spermatogenesis. In this review, the epigenetic regulation and the consequences of its aberrant regulation during mitosis, meiosis and spermiogenesis are described. The current knowledge on epigenetic modifications that occur during male meiosis is discussed, with special attention on events that define meiotic sex chromosome inactivation. Finally, the recent studies focused on transgenerational and paternal effects in mice and humans are discussed. In many cases, these epigenetic effects resulted in impaired fertility and potentially long-ranging affects underlining the importance of research in this area.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Espermatogênese/genética , Espermatozoides/fisiologia , Animais , Diferenciação Celular/genética , Humanos , Infertilidade Masculina/genética , Masculino , Inativação do Cromossomo X
13.
Nat Genet ; 39(5): 614-22, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17450140

RESUMO

There is increasing evidence that epigenetic information can be inherited across generations in mammals, despite extensive reprogramming both in the gametes and in the early developing embryo. One corollary to this is that disrupting the establishment of epigenetic state in the gametes of a parent, as a result of heterozygosity for mutations in genes involved in reprogramming, could affect the phenotype of offspring that do not inherit the mutant allele. Here we show that such effects do occur following paternal inheritance in the mouse. We detected changes to transcription and chromosome ploidy in adult animals. Paternal effects of this type have not been reported previously in mammals and suggest that the untransmitted genotype of male parents can influence the phenotype of their offspring.


Assuntos
Metilação de DNA , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento , Padrões de Herança/genética , Camundongos/genética , Fenótipo , Adenosina Trifosfatases , Proteína Agouti Sinalizadora/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Cromossômicas não Histona , Cruzamentos Genéticos , Análise Mutacional de DNA , Citometria de Fluxo , Componentes do Gene , Imuno-Histoquímica , Masculino , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Mutação Puntual/genética , Alinhamento de Sequência , Espermatogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA