Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8501, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151585

RESUMO

DNA polymerase (DNAP) can correct errors in DNA during replication by proofreading, a process critical for cell viability. However, the mechanism by which an erroneously incorporated base translocates from the polymerase to the exonuclease site and the corrected DNA terminus returns has remained elusive. Here, we present an ensemble of nine high-resolution structures representing human mitochondrial DNA polymerase Gamma, Polγ, captured during consecutive proofreading steps. The structures reveal key events, including mismatched base recognition, its dissociation from the polymerase site, forward translocation of DNAP, alterations in DNA trajectory, repositioning and refolding of elements for primer separation, DNAP backtracking, and displacement of the mismatched base into the exonuclease site. Altogether, our findings suggest a conserved 'bolt-action' mechanism of proofreading based on iterative cycles of DNAP translocation without dissociation from the DNA, facilitating primer transfer between catalytic sites. Functional assays and mutagenesis corroborate this mechanism, connecting pathogenic mutations to crucial structural elements in proofreading steps.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Humanos , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA/genética , DNA/química , Exonucleases/metabolismo
2.
Nat Genet ; 55(10): 1632-1639, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723262

RESUMO

Uniparental inheritance of mitochondrial DNA (mtDNA) is an evolutionary trait found in nearly all eukaryotes. In many species, including humans, the sperm mitochondria are introduced to the oocyte during fertilization1,2. The mechanisms hypothesized to prevent paternal mtDNA transmission include ubiquitination of the sperm mitochondria and mitophagy3,4. However, the causative mechanisms of paternal mtDNA elimination have not been defined5,6. We found that mitochondria in human spermatozoa are devoid of intact mtDNA and lack mitochondrial transcription factor A (TFAM)-the major nucleoid protein required to protect, maintain and transcribe mtDNA. During spermatogenesis, sperm cells express an isoform of TFAM, which retains the mitochondrial presequence, ordinarily removed upon mitochondrial import. Phosphorylation of this presequence prevents mitochondrial import and directs TFAM to the spermatozoon nucleus. TFAM relocalization from the mitochondria of spermatogonia to the spermatozoa nucleus directly correlates with the elimination of mtDNA, thereby explaining maternal inheritance in this species.


Assuntos
DNA Mitocondrial , Herança Materna , Humanos , Masculino , DNA Mitocondrial/genética , Herança Materna/genética , Sêmen/metabolismo , Mitocôndrias/genética , Espermatozoides/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
Nucleic Acids Res ; 50(5): 2765-2781, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35191499

RESUMO

Recognition of mammalian mitochondrial promoters requires the concerted action of mitochondrial RNA polymerase (mtRNAP) and transcription initiation factors TFAM and TFB2M. In this work, we found that transcript slippage results in heterogeneity of the human mitochondrial transcripts in vivo and in vitro. This allowed us to correctly interpret the RNAseq data, identify the bona fide transcription start sites (TSS), and assign mitochondrial promoters for > 50% of mammalian species and some other vertebrates. The divergent structure of the mammalian promoters reveals previously unappreciated aspects of mtDNA evolution. The correct assignment of TSS also enabled us to establish the precise register of the DNA in the initiation complex and permitted investigation of the sequence-specific protein-DNA interactions. We determined the molecular basis of promoter recognition by mtRNAP and TFB2M, which cooperatively recognize bases near TSS in a species-specific manner. Our findings reveal a role of mitochondrial transcription machinery in mitonuclear coevolution and speciation.


Assuntos
Mitocôndrias/genética , Transcrição Gênica , Animais , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição
4.
EMBO J ; 40(19): e107988, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423452

RESUMO

The intricate process of human mtDNA replication requires the coordinated action of both transcription and replication machineries. Transcription and replication events at the lagging strand of mtDNA prompt the formation of a stem-loop structure (OriL) and the synthesis of a ∼25 nt RNA primer by mitochondrial RNA polymerase (mtRNAP). The mechanisms by which mtRNAP recognizes OriL, initiates transcription, and transfers the primer to the replisome are poorly understood. We found that transcription initiation at OriL involves slippage of the nascent transcript. The transcript slippage is essential for initiation complex stability and its ability to translocate the mitochondrial DNA polymerase gamma, PolG, which pre-binds to OriL, downstream of the replication origin thus allowing for the primer synthesis. Our data suggest the primosome assembly at OriL-a complex of mtRNAP and PolG-can efficiently generate the primer, transfer it to the replisome, and protect it from degradation by mitochondrial endonucleases.


Assuntos
Replicação do DNA , DNA Mitocondrial , Mitocôndrias/genética , Origem de Replicação , Iniciação da Transcrição Genética , Sequência de Bases , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Conformação Molecular , Conformação de Ácido Nucleico , RNA/química , RNA/genética , Relação Estrutura-Atividade
5.
J Biol Chem ; 293(15): 5585-5599, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475949

RESUMO

Cytochrome b (Cytb) is the only mitochondrial encoded subunit from the bc1 complex. Cbp3 and Cbp6 are chaperones necessary for translation of the COB mRNA and Cytb hemylation. Here we demonstrate that their role in translation is dispensable in some laboratory strains, whereas their role in Cytb hemylation seems to be universally conserved. BY4742 yeast requires Cbp3 and Cbp6 for efficient COB mRNA translation, whereas the D273-10b strain synthesizes Cytb at wildtype levels in the absence of Cbp3 and Cbp6. Steady-state levels of Cytb are close to wildtype in mutant D273-10b cells, and Cytb forms non-functional, supercomplex-like species with cytochrome c oxidase, in which at least core 1, cytochrome c1, and Rieske iron-sulfur subunits are present. We demonstrated that Cbp3 interacts with the mitochondrial ribosome and with the COB mRNA in both BY4742 and D273-10b strains. The polymorphism(s) causing the differential function of Cbp3, Cbp6, and the assembly feedback regulation of Cytb synthesis is of nuclear origin rather than mitochondrial, and Smt1, a COB mRNA-binding protein, does not seem to be involved in the observed differential phenotype. Our results indicate that the essential role of Cbp3 and Cbp6 is to assist Cytb hemylation and demonstrate that in the absence of heme b, Cytb can form non-functional supercomplexes with cytochrome c oxidase. Our observations support that an additional protein or proteins are involved in Cytb synthesis in some yeast strains.


Assuntos
Citocromos b/biossíntese , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citocromos b/genética , Citocromos c1/genética , Citocromos c1/metabolismo , Proteínas de Membrana/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Nucleic Acids Res ; 45(11): 6628-6643, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28520979

RESUMO

Members of the DEAD-box family are often multifunctional proteins involved in several RNA transactions. Among them, yeast Saccharomyces cerevisiae Mss116 participates in mitochondrial intron splicing and, under cold stress, also in mitochondrial transcription elongation. Here, we show that Mss116 interacts with the mitoribosome assembly factor Mrh4, is required for efficient mitoribosome biogenesis, and consequently, maintenance of the overall mitochondrial protein synthesis rate. Additionally, Mss116 is required for efficient COX1 mRNA translation initiation and elongation. Mss116 interacts with a COX1 mRNA-specific translational activator, the pentatricopeptide repeat protein Pet309. In the absence of Mss116, Pet309 is virtually absent, and although mitoribosome loading onto COX1 mRNA can occur, activation of COX1 mRNA translation is impaired. Mutations abolishing the helicase activity of Mss116 do not prevent the interaction of Mss116 with Pet309 but also do not allow COX1 mRNA translation. We propose that Pet309 acts as an adaptor protein for Mss116 action on the COX1 mRNA 5΄-UTR to promote efficient Cox1 synthesis. Overall, we conclude that the different functions of Mss116 in the biogenesis and functioning of the mitochondrial translation machinery depend on Mss116 interplay with its protein cofactors.


Assuntos
RNA Helicases DEAD-box/fisiologia , Ribossomos Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas , Sequência de Bases , Sítios de Ligação , RNA Helicases DEAD-box/metabolismo , DNA Fúngico/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Iniciação Traducional da Cadeia Peptídica , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 291(17): 9343-55, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26929411

RESUMO

Cytochrome c oxidase assembly requires the synthesis of the mitochondria-encoded core subunits, Cox1, Cox2, and Cox3. In yeast, Pet54 protein is required to activate translation of the COX3 mRNA and to process the aI5ß intron on the COX1 transcript. Here we report a third, novel function of Pet54 on Cox1 synthesis. We observed that Pet54 is necessary to achieve an efficient Cox1 synthesis. Translation of the COX1 mRNA is coupled to the assembly of cytochrome c oxidase by a mechanism that involves Mss51. This protein activates translation of the COX1 mRNA by acting on the COX1 5'-UTR, and, in addition, it interacts with the newly synthesized Cox1 protein in high molecular weight complexes that include the factors Coa3 and Cox14. Deletion of Pet54 decreased Cox1 synthesis, and, in contrast to what is commonly observed for other assembly mutants, double deletion of cox14 or coa3 did not recover Cox1 synthesis. Our results show that Pet54 is a positive regulator of Cox1 synthesis that renders Mss51 competent as a translational activator of the COX1 mRNA and that this role is independent of the assembly feedback regulatory loop of Cox1 synthesis. Pet54 may play a role in Mss51 hemylation/conformational change necessary for translational activity. Moreover, Pet54 physically interacts with the COX1 mRNA, and this binding was independent of the presence of Mss51.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiões 5' não Traduzidas/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Mitocondriais/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
RNA Biol ; 11(7): 953-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25181249

RESUMO

Mitochondrial synthesis of Cox1, the largest subunit of the cytochrome c oxidase complex, is controlled by Mss51 and Pet309, two mRNA-specific translational activators that act via the COX1 mRNA 5'-UTR through an unknown mechanism. Pet309 belongs to the pentatricopeptide repeat (PPR) protein family, which is involved in RNA metabolism in mitochondria and chloroplasts, and its sequence predicts at least 12 PPR motifs in the central portion of the protein. Deletion of these motifs selectively disrupted translation but not accumulation of the COX1 mRNA. We used RNA coimmunoprecipitation assays to show that Pet309 interacts with the COX1 mRNA in vivo and that this association is present before processing of the COX1 mRNA from the ATP8/6 polycistronic mRNA. This association was not affected by deletion of 8 of the PPR motifs but was undetectable after deletion of the entire 12-PPR region. However, interaction of the Pet309 protein lacking 12 PPR motifs with the COX1 mRNA was detected after overexpression of the mutated form of the protein, suggesting that deletion of this region decreased the binding affinity for the COX1 mRNA without abolishing it entirely. Moreover, binding of Pet309 to the COX1 mRNA was affected by deletion of Mss51. This work demonstrates an in vivo physical interaction between a yeast mitochondrial translational activator and its target mRNA and shows the cooperativity of the PPR domains of Pet309 in interaction with the COX1 mRNA.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação , Fatores de Iniciação de Peptídeos/genética , RNA Fúngico/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
9.
J Biol Chem ; 283(3): 1472-1479, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18039654

RESUMO

Pet309 is a protein essential for respiratory growth. It is involved in translation of the yeast mitochondrial COX1 gene, which encodes subunit I of the cytochrome c oxidase. Pet309 is also involved in stabilization of the COX1 mRNA. Mutations in a similar human protein, Lrp130, are associated with Leigh syndrome, where cytochrome c oxidase activity is affected. The sequence of Pet309 reveals the presence of at least seven pentatricopeptide repeats (PPRs) located in tandem in the central portion of the protein. Proteins containing PPR motifs are present in mitochondria and chloroplasts and are in general involved in RNA metabolism. Despite the increasing number of proteins from this family found to play essential roles in mitochondria and chloroplasts, little is understood about the mechanism of action of the PPR domains present in these proteins. In a series of in vivo analyses we constructed a pet309 mutant lacking the PPR motifs. Although the stability of the COX1 mRNA was not affected, synthesis of Cox1 was abolished. The deletion of one PPR motif at a time showed that all the PPR motifs are required for COX1 mRNA translation and respiratory growth. Mutations of basic residues in PPR3 caused reduced respiratory growth. According to a molecular model, these residues are facing a central cavity that could be involved in mRNA-binding activity, forming a possible path for this molecule on Pet309. Our results show that the RNA metabolism function of Pet309 is found in at least two separate domains of the protein.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Aminoácidos , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Modelos Moleculares , Mutagênese , Fatores de Iniciação de Peptídeos , Estrutura Terciária de Proteína , Transporte Proteico , RNA Fúngico/metabolismo , RNA Mitocondrial , Sequências Repetitivas de Aminoácidos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA