Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gigascience ; 112022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35277961

RESUMO

BACKGROUND: The barnacles are a group of >2,000 species that have fascinated biologists, including Darwin, for centuries. Their lifestyles are extremely diverse, from free-swimming larvae to sessile adults, and even root-like endoparasites. Barnacles also cause hundreds of millions of dollars of losses annually due to biofouling. However, genomic resources for crustaceans, and barnacles in particular, are lacking. RESULTS: Using 62× Pacific Biosciences coverage, 189× Illumina whole-genome sequencing coverage, 203× HiC coverage, and 69× CHi-C coverage, we produced a chromosome-level genome assembly of the gooseneck barnacle Pollicipes pollicipes. The P. pollicipes genome is 770 Mb long and its assembly is one of the most contiguous and complete crustacean genomes available, with a scaffold N50 of 47 Mb and 90.5% of the BUSCO Arthropoda gene set. Using the genome annotation produced here along with transcriptomes of 13 other barnacle species, we completed phylogenomic analyses on a nearly 2 million amino acid alignment. Contrary to previous studies, our phylogenies suggest that the Pollicipedomorpha is monophyletic and sister to the Balanomorpha, which alters our understanding of barnacle larval evolution and suggests homoplasy in a number of naupliar characters. We also compared transcriptomes of P. pollicipes nauplius larvae and adults and found that nearly one-half of the genes in the genome are differentially expressed, highlighting the vastly different transcriptomes of larvae and adult gooseneck barnacles. Annotation of the genes with KEGG and GO terms reveals that these stages exhibit many differences including cuticle binding, chitin binding, microtubule motor activity, and membrane adhesion. CONCLUSION: This study provides high-quality genomic resources for a key group of crustaceans. This is especially valuable given the roles P. pollicipes plays in European fisheries, as a sentinel species for coastal ecosystems, and as a model for studying barnacle adhesion as well as its key position in the barnacle tree of life. A combination of genomic, phylogenetic, and transcriptomic analyses here provides valuable insights into the evolution and development of barnacles.


Assuntos
Thoracica , Animais , Cromossomos , Ecossistema , Filogenia , Thoracica/genética , Thoracica/metabolismo , Transcriptoma
2.
Gigascience ; 10(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33718948

RESUMO

BACKGROUND: Anopheles coluzzii and Anopheles arabiensis belong to the Anopheles gambiae complex and are among the major malaria vectors in sub-Saharan Africa. However, chromosome-level reference genome assemblies are still lacking for these medically important mosquito species. FINDINGS: In this study, we produced de novo chromosome-level genome assemblies for A. coluzzii and A. arabiensis using the long-read Oxford Nanopore sequencing technology and the Hi-C scaffolding approach. We obtained 273.4 and 256.8 Mb of the total assemblies for A. coluzzii and A. arabiensis, respectively. Each assembly consists of 3 chromosome-scale scaffolds (X, 2, 3), complete mitochondrion, and unordered contigs identified as autosomal pericentromeric DNA, X pericentromeric DNA, and Y sequences. Comparison of these assemblies with the existing assemblies for these species demonstrated that we obtained improved reference-quality genomes. The new assemblies allowed us to identify genomic coordinates for the breakpoint regions of fixed and polymorphic chromosomal inversions in A. coluzzii and A. arabiensis. CONCLUSION: The new chromosome-level assemblies will facilitate functional and population genomic studies in A. coluzzii and A. arabiensis. The presented assembly pipeline will accelerate progress toward creating high-quality genome references for other disease vectors.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Cromossomos/genética , Genômica , Malária/genética , Mosquitos Vetores/genética
3.
Cells ; 8(10)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597351

RESUMO

BACKGROUND: Retroelements (REs) are mobile genetic elements comprising ~40% of human DNA. They can reshape expression patterns of nearby genes by providing various regulatory sequences. The proportion of regulatory sequences held by REs can serve a measure of regulatory evolution rate of the respective genes and molecular pathways. METHODS: We calculated RE-linked enrichment scores for individual genes and molecular pathways based on ENCODE project epigenome data for enhancer-specific histone modification H3K4me1 in five human cell lines. We identified consensus groups of molecular processes that are enriched and deficient in RE-linked H3K4me1 regulation. RESULTS: We calculated H3K4me1 RE-linked enrichment scores for 24,070 human genes and 3095 molecular pathways. We ranked genes and pathways and identified those statistically significantly enriched and deficient in H3K4me1 RE-linked regulation. CONCLUSION: Non-coding RNA genes were statistically significantly enriched by RE-linked H3K4me1 regulatory modules, thus suggesting their high regulatory evolution rate. The processes of gene silencing by small RNAs, DNA metabolism/chromatin structure, sensory perception/neurotransmission and lipids metabolism showed signs of the fastest regulatory evolution, while the slowest processes were connected with immunity, protein ubiquitination/degradation, cell adhesion, migration and interaction, metals metabolism/ion transport, cell death, intracellular signaling pathways.


Assuntos
Elementos Facilitadores Genéticos , Evolução Molecular , Genoma Humano , Código das Histonas , Retroelementos , Linhagem Celular Tumoral , Epigênese Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA