Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 8(23): 11484-11491, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598750

RESUMO

Dispersal is a fundamental biological process that can be divided into three phases: release, transportation, and deposition. Determining the mechanisms of diaspore release is of prime importance to understand under which climatic conditions and at which frequency diaspores are released and transported. In mosses, wherein spore dispersal takes place through the hygroscopic movements of the peristome, the factors enhancing spore release has received little attention. Here, we determine the levels of relative humidity (RH) at which peristome movements are induced, contrasting the response of species with perfect (fully developed) and specialized (reduced) peristomes. All nine investigated species with perfect peristomes displayed a xerochastic behavior, initiating a closing movement from around 50%-65% RH upon increasing humidity and an opening movement from around 90% RH upon drying. Five of the seven species with specialized peristomes exhibited a hygrochastic behavior, initiating an opening movement under increasing RH (from about 80%) and a closing movement upon drying (from about 90%). These differences between species with hygrochastic and xerochastic peristomes suggest that spore dispersal does not randomly occur regardless of the prevailing climate conditions, which can impact their dispersal distances. In species with xerochastic peristomes, the release of spores under decreasing RH can be interpreted as an adaptive mechanism to disperse spores under optimal conditions for long-distance wind dispersal. In species with hygrochastic peristomes, conversely, the release of spores under wet conditions, which decreases their wind long-distance dispersal capacities, might be seen as a safe-site strategy, forcing spores to land in appropriate (micro-) habitats where their survival is favored. Significant variations were observed in the RH thresholds triggering peristome movements among species, especially in those with hygrochastic peristomes, raising the question of what mechanisms are responsible for such differences.

2.
Mol Ecol ; 25(21): 5568-5584, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27661065

RESUMO

Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi-Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best-fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi-Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans-Atlantic geographic framework.


Assuntos
Evolução Biológica , Briófitas/classificação , Variação Genética , Genética Populacional , Teorema de Bayes , Briófitas/genética , Europa (Continente) , Camada de Gelo , América do Norte , Filogenia , Dispersão Vegetal , Densidade Demográfica
3.
Sci Rep ; 6: 29156, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377592

RESUMO

Oceanic islands are of fundamental importance for the conservation of biodiversity because they exhibit high endemism rates coupled with fast extinction rates. Nowhere in Europe is this pattern more conspicuous than in the Macaronesian biogeographic region. A large network of protected areas within the region has been developed, but the question of whether these areas will still be climatically suitable for the globally threatened endemic element in the coming decades remains open. Here, we make predictions on the fate of the Macaronesian endemic bryophyte flora in the context of ongoing climate change. The potential distribution of 35 Macaronesian endemic bryophyte species was assessed under present and future climate conditions using an ensemble modelling approach. Projections of the models under different climate change scenarios predicted an average decrease of suitable areas of 62-87% per species and a significant elevational increase by 2070, so that even the commonest species were predicted to fit either the Vulnerable or Endangered IUCN categories. Complete extinctions were foreseen for six of the studied Macaronesian endemic species. Given the uncertainty regarding the capacity of endemic species to track areas of suitable climate within and outside the islands, active management associated to an effective monitoring program is suggested.


Assuntos
Briófitas/fisiologia , Mudança Climática , Ilhas , Europa (Continente) , Oceanos e Mares , Especificidade da Espécie , Temperatura
4.
Ann Bot ; 118(2): 197-206, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27296133

RESUMO

BACKGROUND AND AIMS: The settling velocity of diaspores is a key parameter for the measurement of dispersal ability in wind-dispersed plants and one of the most relevant parameters in explicit dispersal models, but remains largely undocumented in bryophytes. The settling velocities of moss spores were measured and it was determined whether settling velocities can be derived from spore diameter using Stokes' Law or if specific traits of spore ornamentation cause departures from theoretical expectations. METHODS: A fall tower design combined with a high-speed camera was used to document spore settling velocities in nine moss species selected to cover the range of spore diameters within the group. Linear mixed effect models were employed to determine whether settling velocity can be predicted from spore diameter, taking specific variation in shape and surface roughness into account. KEY RESULTS: Average settling velocity of moss spores ranged from 0·49 to 8·52 cm s(-1) There was a significant positive relationship between spore settling velocity and size, but the inclusion of variables of shape and texture of spores in the best-fit models provides evidence for their role in shaping spore settling velocities. CONCLUSIONS: Settling velocities in mosses can significantly depart from expectations derived from Stokes' Law. We suggest that variation in spore shape and ornamentation affects the balance between density and drag, and results in different dispersal capacities, which may be correlated with different life-history traits or ecological requirements. Further studies on spore ultrastructure would be necessary to determine the role of complex spore ornamentation patterns in the drag-to-mass ratio and ultimately identify what is the still poorly understood function of the striking and highly variable ornamentation patterns of the perine layer on moss spores.


Assuntos
Briófitas/fisiologia , Dispersão Vegetal , Modelos Biológicos , Esporos , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA