Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
ACS Omega ; 9(21): 22777-22793, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38826533

RESUMO

Malaria, caused by Plasmodium protozoa with Plasmodium falciparum as the most virulent species, continues to pose significant health challenges. Despite the availability of effective antimalarial drugs, the emergence of resistance has heightened the urgency for developing novel therapeutic compounds. In this study, we investigated the enoyl-ACP reductase enzyme of P. falciparum (PfENR) as a promising target for antimalarial drug discovery. Through a comprehensive analysis, we conducted a comparative evaluation of two lead compounds, LD1 (CID: 44405336, lead compounds 1) and LD2 (CID: 72703246, lead compounds 2), obtained from the PubChem/NCBI ligand database, to serve as reference molecules in the identification of potential derivatives using virtual screening assays. Among the newly identified candidates, Ligand 1 (LG1) and Ligand 2 (LG2) exhibited intriguing characteristics and underwent further investigation through docking and molecular dynamics simulations. Ligand 1 (LG1) demonstrated interactions similar to LD1, including hydrogen bonding with Asp218, while Ligand 2 (LG2) displayed superior binding energy comparable to LD1 and LD2, despite lacking hydrogen bonding interactions observed in the control compounds triclosan and its derivative 7-(4-chloro-2-hydroxyphenoxy)-4-methyl-2H-chromen-2-one (CHJ). Following computational validation using the MM/GBSA method to estimate binding free energy, commercially acquired LG1 and LG2 ligands were subjected to in vitro testing. Inhibition assays were performed to evaluate their potential as PfENR inhibitors alongside triclosan as a control compound. LG1 exhibited no inhibitory effects, while LG2 demonstrated inhibitory effects like triclosan. In conclusion, this study contributes valuable insights into developing novel antimalarial drugs by identifying LG2 as a potential ligand and employing a comprehensive approach integrating computational and experimental methodologies.

2.
An Acad Bras Cienc ; 96(2): e20231336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747801

RESUMO

The disease coronavirus COVID-19 has been the cause of millions of deaths worldwide. Among the proteins of SARS-CoV-2, non-structural protein 12 (NSP12) plays a key role during COVID infection and is part of the RNA-dependent RNA polymerase complex. The monitoring of NSP12 polymorphisms is extremely important for the design of new antiviral drugs and monitoring of viral evolution. This study analyzed the NSP12 mutations detected in circulating SARS-CoV-2 during the years 2020 to 2022 in the population of the city of Manaus, Amazonas, Brazil. The most frequent mutations found were P323L and G671S. Reports in the literature indicate that these mutations are related to transmissibility efficiency, which may have contributed to the extremely high numbers of cases in this location. In addition, two mutations described here (E796D and R914K) are close and have RMSD that is similar to the mutations M794V and N911K, which have been described in the literature as influential on the performance of the NSP12 enzyme. These data demonstrate the need to monitor the emergence of new mutations in NSP12 in order to better understand their consequences for the treatments currently used and in the design of new drugs.


Assuntos
COVID-19 , RNA-Polimerase RNA-Dependente de Coronavírus , SARS-CoV-2 , Humanos , Brasil , Simulação por Computador , COVID-19/virologia , COVID-19/transmissão , Mutação/genética , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo
3.
An Acad Bras Cienc ; 96(suppl 1): e20230382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422345

RESUMO

Plasmodium falciparum is known to cause severe malaria, current treatment consists in artemisinin-based combination therapy, but resistance can lead to treatment failure. Knowledge concerning P. falciparum essential proteins can be used for searching new antimalarials, among these a potential candidate is shikimate dehydrogenase (SDH), an enzyme part of the shikimate pathway which is responsible for producing endogenous aromatic amino acids. SDH from P. falciparum (PfSDH) is unexplored by the scientific community, therefore, this study aims to establish the first protocol for active PfSDH expression. Putative PfSDH nucleotide sequence was used to construct an optimized expression vector pET28a+PfSDH inserted in E. coli BL21(DE3). As a result, optimal expression conditions were acquired by varying IPTG and temperature through time. Western Blot analysis was applied to verify appropriate PfSDH expression, solubilization and purification started with lysis followed by two-steps IMAC purification. Enzyme activity was measured spectrophotometrically by NADPH oxidation, optimal PfSDH expression occur at 0.1 mM IPTG for 48 hours growing at 37 °C and shaking at 200 rpm, recombinant PfSDH obtained after purification was soluble, pure and its physiological catalysis was confirmed. Thus, this study describes the first protocol for heterologous expression of PfSDH in soluble and active form.


Assuntos
Oxirredutases do Álcool , Escherichia coli , Plasmodium falciparum , Plasmodium falciparum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Isopropiltiogalactosídeo/metabolismo
4.
Basic Clin Pharmacol Toxicol, v.122, n.4, p.413-423, abr. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2397

RESUMO

Snake venom phospholipases A(2) (PLA(2)s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA(2) homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA(2)s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 g/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA(2) from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.

5.
Basic Clin Pharmacol Toxicol ; 122(4): 413-423, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14875

RESUMO

Snake venom phospholipases A(2) (PLA(2)s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA(2) homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA(2)s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 g/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA(2) from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA