Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559101

RESUMO

The serotonin 1A receptor has been linked to both the pathophysiology of major depressive disorder (MDD) and the antidepressant action of serotonin reuptake inhibitors. Most PET studies of the serotonin 1A receptor in MDD used the receptor antagonist radioligand, [carbonyl-11C]WAY100635; however the interpretation of the combined results has been contentious owing to reports of higher or lower binding in MDD with different outcome measures. The reasons for these divergent results originate from several sources, including properties of the radiotracer itself, which complicate its quantification and interpretation; as well as from previously reported differences between MDD and healthy volunteers in both reference tissue binding and plasma free fraction, which are typically assumed not to differ. Recently, we have developed two novel hierarchical multivariate methods which we validated for the quantification and analysis of [11C]WAY100635, which show better accuracy and inferential efficiency compared to standard analysis approaches. Importantly, these new methods should theoretically be more resilient to many of the factors thought to have caused the discrepancies observed in previous studies. We sought to apply these methods in the largest [11C]WAY100635 sample to date, consisting of 160 individuals, including 103 MDD patients, of whom 50 were not-recently-medicated and 53 were antidepressant-exposed, as well as 57 healthy volunteers. While the outcome measure discrepancies were substantial using conventional univariate analysis, our multivariate analysis techniques instead yielded highly consistent results across PET outcome measures and across pharmacokinetic models, with all approaches showing higher serotonin 1A autoreceptor binding potential in the raphe nuclei of not-recently-medicated MDD patients relative to both healthy volunteers and antidepressant-exposed MDD patients. Moreover, with the additional precision of estimates afforded by this approach, we can show that while binding is also higher in projection areas in this group, these group differences are approximately half of those in the raphe nuclei, which are statistically distinguishable from one another. These results are consistent with the biological role of the serotonin 1A autoreceptor in the raphe nuclei in regulating serotonin neuron firing and release, and with preclinical and clinical evidence of deficient serotonin activity in MDD due to over expression of autoreceptors resulting from genetic and/or epigenetic effects. These results are also consistent with downregulation of autoreceptors as a mechanism of action of selective serotonin reuptake inhibitors. In summary, the results using multivariate analysis approaches therefore demonstrate both face and convergent validity, and may serve to provide a resolution and consensus interpretation for the disparate results of previous studies examining the serotonin 1A receptor in MDD.

2.
J Nucl Med ; 65(2): 320-326, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38124218

RESUMO

Portable, cost-effective PET cameras can radically expand the applicability of PET. We present here a within-participant comparison of fully quantified [18F]FDG dynamic scans in healthy volunteers using the standard Biograph mCT scanner and portable CerePET scanner. Methods: Each of 20 healthy volunteers underwent dynamic [18F]FDG imaging with both scanners (1-154 d apart) and concurrent arterial blood sampling. Tracer SUV, net influx rate (Ki), and the corresponding cerebral metabolic rate of glucose (CMRglu) were quantified at regional and voxel levels. Results: At the regional level, CerePET outcome measure estimates within participants robustly correlated with Biograph mCT estimates in the neocortex, wherein the average Pearson correlation coefficients across participants ± SD were 0.83 ± 0.07 (SUV) and 0.85 ± 0.08 (Ki and CMRglu). There was also strong agreement between CerePET and Biograph mCT estimates, wherein the average regression slopes across participants were 0.84 ± 0.17 (SUV), 0.83 ± 0.17 (Ki), and 0.85 ± 0.18 (CMRglu). There was similar bias across participants but higher correlation and less variability in subcortical regions than in cortical regions. Pearson correlation coefficients for subcortical regions equaled 0.97 ± 0.02 (SUV) and 0.97 ± 0.03 (Ki and CMRglu), and average regression slopes equaled 0.79 ± 0.14 (SUV), 0.83 ± 0.11 (Ki), and 0.86 ± 0.11 (CMRglu). In voxelwise assessment, CerePET and Biograph mCT estimates across outcome measures were significantly different only in a cluster of left frontal white matter. Conclusion: Our results indicate robust correlation and agreement between semi- and fully quantitative brain glucose metabolism measurements from portable CerePET and standard Biograph mCT scanners. The results obtained with a portable PET scanner in this comparison in humans require follow-up but lend confidence to the feasibility of more flexible and portable brain imaging with PET.


Assuntos
Fluordesoxiglucose F18 , Neocórtex , Humanos , Glucose/metabolismo , Neocórtex/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neuroimagem
3.
ACS Chem Neurosci ; 14(24): 4409-4418, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38048230

RESUMO

Docosahexaenoic acid [22:6(n-3), DHA], a polyunsaturated fatty acid, has an important role in regulating neuronal functions and in normal brain development. Dysregulated brain DHA uptake and metabolism are found in individuals carrying the APOE4 allele, which increases the genetic risk for Alzheimer's disease (AD), and are implicated in the progression of several neurodegenerative disorders. However, there are limited tools to assess brain DHA kinetics in vivo that can be translated to humans. Here, we report the synthesis of an ω-radiofluorinated PET probe of DHA, 22-[18F]fluorodocosahexaenoic acid (22-[18F]FDHA), for imaging the uptake of DHA into the brain. Using the nonradiolabeled 22-FDHA, we confirmed that fluorination of DHA at the ω-position does not significantly alter the anti-inflammatory effect of DHA in microglial cells. Through dynamic PET-MR studies using mice, we observed the accumulation of 22-[18F]FDHA in the brain over time and estimated DHA's incorporation coefficient (K*) using an image-derived input function. Finally, DHA brain K* was validated using intravenous administration of 15 mg/kg arecoline, a natural product known to increase the DHA K* in rodents. 22-[18F]FDHA is a promising PET probe that can reveal altered lipid metabolism in APOE4 carriers, AD, and other neurologic disorders. This new probe, once translated into humans, would enable noninvasive and longitudinal studies of brain DHA dynamics by guiding both pharmacological and nonpharmacological interventions for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Ácidos Docosa-Hexaenoicos , Humanos , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Transporte Biológico , Doença de Alzheimer/metabolismo
4.
EJNMMI Phys ; 10(1): 72, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987874

RESUMO

Full quantification of Positron Emission Tomography (PET) requires an arterial input function (AIF) for measurement of certain targets, or using particular radiotracers, or for the quantification of specific outcome measures. The AIF represents the measurement of radiotracer concentrations in the arterial blood plasma over the course of the PET examination. Measurement of the AIF is prone to error as it is a composite measure created from the combination of multiple measurements of different samples with different equipment, each of which can be sources of measurement error. Moreover, its measurement requires a high degree of temporal granularity for early time points, which necessitates a compromise between quality and quantity of recorded samples. For these reasons, it is often desirable to fit models to this data in order to improve its quality before using it for quantification of radiotracer binding in the tissue. The raw observations of radioactivity in arterial blood and plasma samples are derived from radioactive decay, which is measured as a number of recorded counts. Count data have several specific properties, including the fact that they cannot be negative as well as a particular mean-variance relationship. Poisson regression is the most principled modelling strategy for working with count data, as it both incorporates and exploits these properties. However, no previous studies to our knowledge have taken this approach, despite the advantages of greater efficiency and accuracy which result from using the appropriate distributional assumptions. Here, we implement a Poisson regression modelling approach for the AIF as proof-of-concept of its application. We applied both parametric and non-parametric models for the input function curve. We show that a negative binomial distribution is a more appropriate error distribution for handling overdispersion. Furthermore, we extend this approach to a hierarchical non-parametric model which is shown to be highly resilient to missing data. We thus demonstrate that Poisson regression is both feasible and effective when applied to AIF data, and propose that this is a promising strategy for modelling blood count data for PET in future.

5.
Br J Psychiatry ; 223(3): 415-421, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395098

RESUMO

BACKGROUND: Childhood and lifetime adversity may reduce brain serotonergic (5-HT) neurotransmission by epigenetic mechanisms. AIMS: We tested the relationships of childhood adversity and recent stress to serotonin 1A (5-HT1A) receptor genotype, DNA methylation of this gene in peripheral blood monocytes and in vivo 5-HT1A receptor binding potential (BPF) determined by positron emission tomography (PET) in 13 a priori brain regions, in participants with major depressive disorder (MDD) and healthy volunteers (controls). METHOD: Medication-free participants with MDD (n = 192: 110 female, 81 male, 1 other) and controls (n = 88: 48 female, 40 male) were interviewed about childhood adversity and recent stressors and genotyped for rs6295. DNA methylation was assayed at three upstream promoter sites (-1019, -1007, -681) of the 5-HT1A receptor gene. A subgroup (n = 119) had regional brain 5-HT1A receptor BPF quantified by PET. Multi-predictor models were used to test associations between diagnosis, recent stress, childhood adversity, genotype, methylation and BPF. RESULTS: Recent stress correlated positively with blood monocyte methylation at the -681 CpG site, adjusted for diagnosis, and had positive and region-specific correlations with 5-HT1A BPF in participants with MDD, but not in controls. In participants with MDD, but not in controls, methylation at the -1007 CpG site had positive and region-specific correlations with binding potential. Childhood adversity was not associated with methylation or BPF in participants with MDD. CONCLUSIONS: These findings support a model in which recent stress increases 5-HT1A receptor binding, via methylation of promoter sites, thus affecting MDD psychopathology.


Assuntos
Transtorno Depressivo Maior , Humanos , Masculino , Feminino , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/tratamento farmacológico , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/uso terapêutico , Metilação de DNA , Serotonina/metabolismo , Serotonina/uso terapêutico , Depressão , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Estresse Psicológico/genética
6.
Eur Neuropsychopharmacol ; 70: 1-13, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36780841

RESUMO

We examined relationships between the serotonin system and stress in major depression and suicidal behavior. Twenty-five medication-free depressed participants (13 suicide attempters) underwent same-day [11C]DASB and [11C]CUMI-101 positron emission tomography (PET) imaging. Binding potential (BPND) to the serotonin transporter (5-HTT) and serotonin 1A (5-HT1A) receptor, respectively, was quantified using the NRU 5-HT atlas, reflecting distinct spatial distributions of multiple serotonin targets. Ecological momentary assessment (EMA) measured current stress over one week proximal to imaging. EMA stress did not differ between attempters and non-attempters. In all depressed participants, 5-HTT and 5-HT1A BPND were unrelated to EMA stress. There were region-specific effects of 5-HTT (p=0.002) and 5-HT1A BPND (p=0.03) in attempters vs. nonattempters. In attempters, region-specific associations between 5-HTT (p=0.03) and 5-HT1A (p=0.005) BPND and EMA stress emerged. While no post-hoc 5-HTT BPND correlations were significant, 5-HT1A BPND correlated positively with EMA stress in attempters in 9/10 regions (p-values<0.007), including the entire cortex except the largely occipital region 5. Brodmann-based regional analyses found diminished effects for 5-HTT and subcortically localized positive corrrelations between 5-HT1A and EMA stress, in attempters only. Given comparable depression severity and childhood and current stress between attempters and nonattempters, lower 5-HTT binding in attempters vs. nonattempters may suggest a biological risk marker. Localized lower 5-HTT and widespread higher 5-HT1A binding with stress among attempters specifically may suggest that a serotonergic phenotype might be a key determinant of risk or resiliency for suicidal behavior.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Ideação Suicida , Serotonina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Depressão , Avaliação Momentânea Ecológica , Biomarcadores/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptor 5-HT1A de Serotonina/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36341886

RESUMO

Dysreglulated brain arachidonic acid (AA) metabolism is involved in chronic inflammation and is influenced by apolipoprotein E4 (APOE4) genotype, the strongest genetic risk factor of late-onset Alzheimer's disease (AD). Visualization of AA uptake and distribution in the brain can offer insight into neuroinflammation and AD pathogenesis. Here we present a novel synthesis and radiosynthesis of 20-[18F]fluoroarachidonic acid ([18F]-FAA) for PET imaging using a convergent route and a one-pot, single-purification radiolabeling procedure, and demonstrate its brain uptake in human ApoE4 targeted replacement (ApoE4-TR) mice. By examining p38 phosphorylation in astrocytes, we found that fluorination of AA at the ω-position did not significantly alter its biochemical role in cells. The brain incorporation coefficient (K*) of [18F]-FAA was estimated via multiple methods by using an image-derived input function from the right ventricle of the heart as a proxy of the arterial input function and brain tracer concentrations assessed by dynamic PET-MR imaging. This new synthetic approach should facilitate the practical [18F]-FAA production and allow its translation into clinical use, making investigations of dysregulation of lipid metabolism more feasible in the study of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Animais , Camundongos , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Astrócitos , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos
8.
Mol Psychiatry ; 27(10): 4136-4143, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760877

RESUMO

Mood disorders and suicidal behavior have moderate heritability and are associated with altered corticolimbic serotonin 1A receptor (5-HT1A) brain binding. However, it is unclear whether this reflects genetic effects or epigenetic effects of childhood adversity, compensatory mechanisms, or illness stress-related changes. We sought to separate such effects on 5-HT1A binding by examining high familial risk individuals (HR) who have passed through the age of greatest risk for psychopathology onset with and without developing mood disorder or suicidal behavior. PET imaging quantified 5-HT1A binding potential BPND using [11C]CUMI-101 in healthy volunteers (HV, N = 23) and three groups with one or more relatives manifesting early-onset mood disorder and suicide attempt: 1. unaffected HR (N = 23); 2. HR with lifetime mood disorder and no suicide attempt (HR-MOOD, N = 26); and 3. HR-MOOD with previous suicide attempt (HR-MOOD + SA, N = 20). Findings were tested in an independent cohort not selected for family history (HV, MOOD, and MOOD + SA, total N = 185). We tested for regional BPND differences and whether brain-wide patterns distinguished between groups. Low ventral prefrontal 5-HT1A BPND was associated with lifetime mood disorder diagnosis and suicide attempt, but only in subjects with a family history of mood disorder and suicide attempt. Brain-wide 5-HT1A BPND patterns including low ventral prefrontal and mesiotemporal cortical binding distinguished HR-MOOD + SA from HV. A biological endophenotype associated with resilience was not observed. Low ventral prefrontal 5-HT1A BPND may reflect familial mood disorder and suicide-related pathology. Further studies are needed to determine if higher ventral prefrontal 5-HT1A BPND confers resilience, reducing risk of suicidal behavior in the context of familial risk, and thereby offer a potential prevention target.


Assuntos
Receptor 5-HT1A de Serotonina , Ideação Suicida , Humanos , Receptor 5-HT1A de Serotonina/genética , Predisposição Genética para Doença , Serotonina , Transtornos do Humor/genética
9.
Mol Psychiatry ; 27(8): 3417-3424, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35487966

RESUMO

Serotonin transporter (5-HTT) binding deficits are reported in major depressive disorder (MDD). However, most studies have not considered serotonin system anatomy when parcellating brain regions of interest (ROIs). We now investigate 5-HTT binding in MDD in two novel ways: (1) use of a 5-HTT tract-based analysis examining binding along serotonergic axons; and (2) using the Copenhagen University Hospital Neurobiology Research Unit (NRU) 5-HT Atlas, based on brain-wide binding patterns of multiple serotonin receptor types. [11C]DASB 5-HTT PET scans were obtained in 60 unmedicated participants with MDD in a current depressive episode and 31 healthy volunteers (HVs). Binding potential (BPP) was quantified with empirical Bayesian estimation in graphical analysis (EBEGA). Within the [11C]DASB tract, the MDD group showed significantly lower BPP compared with HVs (p = 0.02). This BPP diagnosis difference also significantly varied by tract location (p = 0.02), with the strongest MDD binding deficit most proximal to brainstem raphe nuclei. NRU 5-HT Atlas ROIs showed a BPP diagnosis difference that varied by region (p < 0.001). BPP was lower in MDD in 3/10 regions (p-values < 0.05). Neither [11C]DASB tract or NRU 5-HT Atlas BPP correlated with depression severity, suicidal ideation, suicide attempt history, or antidepressant medication exposure. Future studies are needed to determine the causes of this deficit in 5-HTT binding being more pronounced in proximal axon segments and in only a subset of ROIs for the pathogenesis of MDD. Such regional specificity may have implications for targeting antidepressant treatment, and may extend to other serotonin-related disorders.


Assuntos
Transtorno Depressivo Maior , Proteínas da Membrana Plasmática de Transporte de Serotonina , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Serotonina/metabolismo , Teorema de Bayes , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Antidepressivos/uso terapêutico
10.
Neuroimage ; 249: 118901, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026425

RESUMO

INTRODUCTION: Full quantification of positron emission tomography (PET) data requires an input function. This generally means arterial blood sampling, which is invasive, labor-intensive and burdensome. There is no current, standardized method to fully quantify PET radiotracers with irreversible kinetics in the absence of blood data. Here, we present Source-to-Target Automatic Rotating Estimation (STARE), a novel, data-driven approach to quantify the net influx rate (Ki) of irreversible PET radiotracers, that requires only individual-level PET data and no blood data. We validate STARE with human [18F]FDG PET scans and assess its performance using simulations. METHODS: STARE builds upon a source-to-target tissue model, where the tracer time activity curves (TACs) in multiple "target" regions are expressed at once as a function of a "source" region, based on the two-tissue irreversible compartment model, and separates target region Ki from source Ki by fitting the source-to-target model across all target regions simultaneously. To ensure identifiability, data-driven, subject-specific anchoring is used in the STARE minimization, which takes advantage of the PET signal in a vasculature cluster in the field of view (FOV) that is automatically extracted and partial volume-corrected. To avoid the need for any a priori determination of a single source region, each of the considered regions acts in turn as the source, and a final Ki is estimated in each region by averaging the estimates obtained in each source rotation. RESULTS: In a large dataset of human [18F]FDG scans (N = 69), STARE Ki estimates were correlated with corresponding arterial blood-based Ki estimates (r = 0.80), with an overall regression slope of 0.88, and were precisely estimated, as assessed by comparing STARE Ki estimates across several runs of the algorithm (coefficient of variation across runs=6.74 ± 2.48%). In simulations, STARE Ki estimates were largely robust to factors that influence the individualized anchoring used within its algorithm. CONCLUSION: Through simulations and application to [18F]FDG PET data, feasibility is demonstrated for STARE blood-free, data-driven quantification of Ki. Future work will include applying STARE to PET data obtained with a portable PET camera and to other irreversible radiotracers.


Assuntos
Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Fluordesoxiglucose F18/farmacocinética , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Adulto , Humanos , Processamento de Imagem Assistida por Computador/normas , Modelos Teóricos , Tomografia por Emissão de Pósitrons/normas
11.
Int J Neuropsychopharmacol ; 25(7): 534-544, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34996114

RESUMO

BACKGROUND: The pathophysiology of bipolar disorder (BD) remains largely unknown despite it causing significant disability and suicide risk. Serotonin signaling may play a role in the pathophysiology, but direct evidence for this is lacking. Treatment of the depressed phase of the disorder is limited. Previous studies have indicated that positron emission tomography (PET) imaging of the serotonin 1A receptor (5HT1AR) may predict antidepressant response. METHODS: A total of 20 participants with BD in a current major depressive episode and 16 healthy volunteers had PET imaging with [11C]CUMI-101, employing a metabolite-corrected input function for quantification of binding potential to the 5HT1AR. Bipolar participants then received an open-labeled, 6-week clinical trial with a selective serotonin reuptake inhibitor (SSRI) in addition to their mood stabilizer. Clinical ratings were obtained at baseline and during SSRI treatment. RESULTS: Pretreatment binding potential (BPF) of [11C]CUMI-101 was associated with a number of pretreatment clinical variables within BD participants. Within the raphe nucleus, it was inversely associated with the baseline Montgomery Åsberg Rating Scale (P = .026), the Beck Depression Inventory score (P = .0023), and the Buss Durkee Hostility Index (P = .0058), a measure of lifetime aggression. A secondary analysis found [11C]CUMI-101 BPF was higher in bipolar participants compared with healthy volunteers (P = .00275). [11C]CUMI-101 BPF did not differ between SSRI responders and non-responders (P = .907) to treatment and did not predict antidepressant response (P = .580). Voxel-wise analyses confirmed the results obtained in regions of interest analyses. CONCLUSIONS: A disturbance of serotonin system function is associated with both the diagnosis of BD and its severity of depression. Pretreatment 5HT1AR binding did not predict SSRI antidepressant outcome.The study was listed on clinicaltrials.gov with identifier NCT02473250.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Radioisótopos de Carbono/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Tomografia por Emissão de Pósitrons/métodos , Receptor 5-HT1A de Serotonina , Serotonina , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
12.
Int J Neuropsychopharmacol ; 25(1): 36-45, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555145

RESUMO

BACKGROUND: The serotonin 1A (5-HT1A) receptor has been implicated in depression and suicidal behavior. Lower resting cortisol levels are associated with higher 5-HT1A receptor binding, and both differentiate suicide attempters with depression. However, it is not clear whether 5-HT1A receptor binding and cortisol responses to stress are related to familial risk and resilience for suicidal behavior. METHODS: [11C]CUMI-101 positron emission tomography imaging to quantify regional brain 5-HT1A receptor binding was conducted in individuals considered to be at high risk for mood disorder or suicidal behavior on the basis of having a first- or second-degree relative(s) with an early onset mood disorder and history of suicidal behavior. These high-risk individuals were subdivided into the following groups: high risk resilient having no mood disorder or suicidal behavior (n = 29); high risk with mood disorder and no suicidal behavior history (n = 31); and high risk with mood disorder and suicidal behavior (n = 25). Groups were compared with healthy volunteers without a family history of mood disorder or suicidal behavior (n = 34). Participants underwent the Trier Social Stress Task (TSST). All participants were free from psychotropic medications at the time of the TSST and PET scanning. RESULTS: We observed no group differences in 5-HT1A receptor binding considering all regions simultaneously, nor did we observe heterogeneity of the effect of group across regions. These results were similar across outcome measures (BPND for all participants and BPp in a subset of the sample) and definitions of regions of interest (ROIs; standard or serotonin system-specific ROIs). We also found no group differences on TSST outcomes. Within the high risk with mood disorder and suicidal behavior group, lower BPp binding (ß = -0.084, SE = 0.038, P = .048) and higher cortisol reactivity to stress (ß = 9.25, 95% CI [3.27,15.23], P = .004) were associated with higher lethality attempts. There were no significant relationships between 5-HT1A binding and cortisol outcomes. CONCLUSIONS: 5-HT1A receptor binding in ROIs was not linked to familial risk or resilience protecting against suicidal behavior or mood disorder although it may be related to lethality of suicide attempt. Future studies are needed to better understand the biological mechanisms implicated in familial risk for suicidal behavior and how hypothalamic-pituitary-adrenal axis function influences such risk.


Assuntos
Hidrocortisona/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Estresse Psicológico/metabolismo , Ideação Suicida , Tentativa de Suicídio , Adulto , Encéfalo/metabolismo , Transtorno Depressivo Maior/metabolismo , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Piperazinas , Sistema Hipófise-Suprarrenal/metabolismo , Tomografia por Emissão de Pósitrons , Piridinas
13.
Pharmaceutics ; 13(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803856

RESUMO

Glioblastoma (GBM) is the most common primary adult brain malignancy with an extremely poor prognosis and a median survival of fewer than two years. A key reason for this high mortality is that the blood-brain barrier (BBB) significantly restricts systemically delivered therapeutics to brain tumors. High-intensity focused ultrasound (HIFU) with microbubbles is a methodology being used in clinical trials to noninvasively permeabilize the BBB for systemic therapeutic delivery to GBM. Topotecan is a topoisomerase inhibitor used as a chemotherapeutic agent to treat ovarian and small cell lung cancer. Studies have suggested that topotecan can cross the BBB and can be used to treat brain metastases. However, pharmacokinetic data demonstrated that topotecan peak concentration in the brain extracellular fluid after systemic injection was ten times lower than in the blood, suggesting less than optimal BBB penetration by topotecan. We hypothesize that HIFU with microbubbles treatment can open the BBB and significantly increase topotecan concentration in the brain. We radiolabeled topotecan with 11C and acquired static and dynamic positron emission tomography (PET) scans to quantify [11C] topotecan uptake in the brains of normal mice and mice after HIFU treatment. We found that HIFU treatments significantly increased [11C] topotecan brain uptake. Moreover, kinetic analysis of the [11C] topotecan dynamic PET data demonstrated a substantial increase in [11C] topotecan volume of distribution in the brain. Furthermore, we found a decrease in [11C] topotecan brain clearance, confirming the potential of HIFU to aid in the delivery of topotecan through the BBB. This opens the potential clinical application of [11C] topotecan as a tool to predict topotecan loco-regional brain concentration in patients with GBMs undergoing experimental HIFU treatments.

14.
Mol Psychiatry ; 26(6): 2393-2401, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32355333

RESUMO

Serotonergic dysfunction is implicated in major depressive disorder (MDD), but the mechanisms of this relationship remain elusive. Serotonin 1A (5-HT1A) autoreceptors regulate brain-wide serotonin neuron firing and are positioned to assert large-scale effects on negative emotion. Here we investigated the relationship between raphe 5-HT1A binding and brain-wide network dynamics of negative emotion. 22 healthy-volunteers (HV) and 27 medication-free participants with MDD underwent positron emission tomography (PET) using [11C]CUMI-101 (CUMI) to quantify 5-HT1A binding in midbrain raphe nuclei and functional magnetic resonance imaging (fMRI) scanning during emotionally negative picture viewing. Causal connectivity across regions responsive to negative emotion was estimated in the fMRI data using a multivariate dynamical systems model. During negative picture viewing, MDD subjects demonstrated significant hippocampal inhibition of amygdala, basal-ganglia, thalamus, orbital frontal cortex, inferior frontal gyrus and dorsomedial prefrontal cortex (IFG, dmPFC). MDD-related connectivity was not associated with raphe 5-HT1A binding. However, greater hippocampal inhibition of amygdala, thalamus, IFG and dmPFC correlated with hippocampal 5-HT1A binding. Correlation between hippocampal 5-HT1A binding and the hippocampal inhibition network was specific to MDD but not HV. MDD and HV groups also differed with respect to the correlation between raphe and hippocampal 5-HT1A binding which was more pronounced in HV. These findings suggest that increased hippocampal network inhibition in MDD is linked to hippocampal serotonergic dysfunction which may in turn arise from disrupted linkage in raphe to hippocampus serotonergic circuitry.


Assuntos
Transtorno Depressivo Maior , Serotonina , Encéfalo/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Receptor 5-HT1A de Serotonina
15.
J Nucl Med ; 62(3): 412-417, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32680926

RESUMO

The PET ligand 11C-PBR28 (N-((2-(methoxy-11C)-phenyl)methyl)-N-(6-phenoxy-3-pyridinyl)acetamide) binds to the 18-kDa translocator protein (TSPO), a biomarker of glia. In clinical studies of TSPO, the ligand total distribution volume, VT, is frequently the reported outcome measure. Since VT is the sum of the ligand-specific distribution volume (VS) and the nondisplaceable-binding distribution volume (VND), differences in VND across subjects and groups will have an impact on VTMethods: Here, we used a recently developed method for simultaneous estimation of VND (SIME) to disentangle contributions from VND and VS Data from 4 previously published 11C-PBR28 PET studies were included: before and after a lipopolysaccharide challenge (8 subjects), in alcohol use disorder (14 patients, 15 controls), in first-episode psychosis (16 patients, 16 controls), and in Parkinson disease (16 patients, 16 controls). In each dataset, regional VT estimates were obtained with a standard 2-tissue-compartment model, and brain-wide VND was estimated with SIME. VS was then calculated as VT - VND VND and VS were then compared across groups, within each dataset. Results: A lower VND was found for individuals with alcohol-use disorder (34%, P = 0.00084) and Parkinson disease (34%, P = 0.0032) than in their corresponding controls. We found no difference in VND between first-episode psychosis patients and their controls, and the administration of lipopolysaccharide did not change VNDConclusion: Our findings suggest that in TSPO PET studies, nondisplaceable binding can differ between patient groups and conditions and should therefore be considered.


Assuntos
Tomografia por Emissão de Pósitrons , Pirimidinas/metabolismo , Receptores de GABA/metabolismo , Artefatos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Ligação Proteica
16.
J Affect Disord ; 280(Pt A): 105-113, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207282

RESUMO

BACKGROUND: It has been argued that unipolar major depressive disorder (MDD) and bipolar disorder (BD) exist on a continuous spectrum, given their overlapping symptomatology and genetic diatheses. The Bipolarity Index (BI) is a scale that considers bipolarity as a continuous construct and was developed to assess confidence in bipolar diagnosis. Here we investigated whether BI scores correlate with gray matter volume (GMV) in a sample of unmedicated unipolar and bipolar depressed individuals. METHODS: 158 subjects (139 with MDD, 19 with BD) in a major depressive episode at time of scan were assigned BI scores. T1-weighted Magnetic Resonance Imaging scans were obtained and processed with Voxel-Based Morphometry using SPM12 (CAT12 toolbox) to assess GMV. Regression was performed at the voxel level to identify clusters of voxels whose GMV was associated with BI score, (p<0.001, family-wise error-corrected cluster-level p<0.05), with age, sex and total intracranial volume as covariates. RESULTS: GMV was inversely correlated with BI score in four clusters located in left lateral occipital cortex, bilateral angular gyri and right frontal pole. Clusters were no longer significant after controlling for diagnosis. GMV was not correlated with BI score within the MDD cohort alone. LIMITATIONS: Incomplete clinical data required use of a modified BI scale. CONCLUSION: BI scores were inversely correlated with GMV in unmedicated subjects with MDD and BD, but these correlations appeared driven by categorical diagnosis. Future work will examine other imaging modalities and focus on elements of the BI scale most likely to be related to brain structure and function.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtorno Bipolar/diagnóstico por imagem , Córtex Cerebral , Transtorno Depressivo Maior/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
17.
Elife ; 92020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231171

RESUMO

In the mouse, the osteoblast-derived hormone Lipocalin-2 (LCN2) suppresses food intake and acts as a satiety signal. We show here that meal challenges increase serum LCN2 levels in persons with normal or overweight, but not in individuals with obesity. Postprandial LCN2 serum levels correlate inversely with hunger sensation in challenged subjects. We further show through brain PET scans of monkeys injected with radiolabeled recombinant human LCN2 (rh-LCN2) and autoradiography in baboon, macaque, and human brain sections, that LCN2 crosses the blood-brain barrier and localizes to the hypothalamus in primates. In addition, daily treatment of lean monkeys with rh-LCN2 decreases food intake by 21%, without overt side effects. These studies demonstrate the biology of LCN2 as a satiety factor and indicator and anorexigenic signal in primates. Failure to stimulate postprandial LCN2 in individuals with obesity may contribute to metabolic dysregulation, suggesting that LCN2 may be a novel target for obesity treatment.


Obesity has reached epidemic proportions worldwide and affects more than 40% of adults in the United States. People with obesity have a greater likelihood of developing type 2 diabetes, cardiovascular disease or chronic kidney disease. Changes in diet and exercise can be difficult to follow and result in minimal weight loss that is rarely sustained overtime. In fact, in people with obesity, weight loss can lower the metabolism leading to increased weight gain. New drugs may help some individuals achieve 5 to 10% weight loss but have side effects that prevent long-term use. Previous studies in mice show that a hormone called Lipocalin-2 (LCN2) suppresses appetite. It also reduces body weight and improves sugar metabolism in the animals. But whether this hormone has the same effects in humans or other primates is unclear. If it does, LCN2 might be a potential obesity treatment. Now, Petropoulou et al. show that LCN2 suppressed appetite in humans and monkeys. In human studies, LCN2 levels increased after a meal in individuals with normal weight or overweight, but not in individuals with obesity. Higher levels of LCN2 in a person's blood were also associated with a feeling of reduced hunger. Using brain scans, Petropoulou et al. showed that LCN2 crossed the blood-brain barrier in monkeys and bound to the hypothalamus, the brain center regulating appetite and energy balance. LCN2 also bound to human and monkey hypothalamus tissue in laboratory experiments. When injected into monkeys, the hormone suppressed food intake and lowered body weight without toxic effects in short-term studies. The experiments lay the initial groundwork for testing whether LCN2 might be a useful treatment for obesity. More studies in animals will help scientists understand how LCN2 works, which patients might benefit, how it would be given to patients and for how long. Clinical trials would also be needed to verify whether it is an effective and safe treatment for obesity.


Assuntos
Lipocalina-2/metabolismo , Macaca/metabolismo , Obesidade/metabolismo , Papio/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ingestão de Alimentos , Humanos , Lipocalina-2/genética , Obesidade/diagnóstico por imagem , Obesidade/genética , Obesidade/fisiopatologia , Tomografia por Emissão de Pósitrons , Transporte Proteico
18.
J Cereb Blood Flow Metab ; 40(8): 1576-1585, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32065076

RESUMO

It is a growing concern that outcomes of neuroimaging studies often cannot be replicated. To counteract this, the magnetic resonance (MR) neuroimaging community has promoted acquisition standards and created data sharing platforms, based on a consensus on how to organize and share MR neuroimaging data. Here, we take a similar approach to positron emission tomography (PET) data. To facilitate comparison of findings across studies, we first recommend publication standards for tracer characteristics, image acquisition, image preprocessing, and outcome estimation for PET neuroimaging data. The co-authors of this paper, representing more than 25 PET centers worldwide, voted to classify information as mandatory, recommended, or optional. Second, we describe a framework to facilitate data archiving and data sharing within and across centers. Because of the high cost of PET neuroimaging studies, sample sizes tend to be small and relatively few sites worldwide have the required multidisciplinary expertise to properly conduct and analyze PET studies. Data sharing will make it easier to combine datasets from different centers to achieve larger sample sizes and stronger statistical power to test hypotheses. The combining of datasets from different centers may be enhanced by adoption of a common set of best practices in data acquisition and analysis.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Guias de Prática Clínica como Assunto , Consenso , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador/normas , Neuroimagem/normas , Tomografia por Emissão de Pósitrons/normas , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes
19.
Bipolar Disord ; 22(3): 296-302, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31604361

RESUMO

OBJECTIVE: To compare white matter integrity (WMI) in bipolar disorder (BD) relative to healthy volunteers (HVs) and major depressive disorder (MDD). To determine the relationship of bipolar-specific differences in WMI to cerebral perfusion, body mass index (BMI), and blood pressure as indices of cardiovascular function. METHODS: Thirty-two participants with BD, 44 with MDD, and 41 HV were recruited. All BD and MDD participants were in a major depressive episode, and all but 12 BD participants were medication-free. 64-direction diffusion tensor imaging (DTI) and arterial spin labeling (ASL) sequences were obtained. Tract-based spatial statistics (TBSS) on four DTI indices were employed to distinguish patterns of DTI in BD relative to HV and MDD groups. BMI, blood pressure, and medical histories were also obtained for the BD participants. RESULTS: A cluster of lower axial diffusivity (AD) was found in BD participants in comparison to the HVs in the left posterior thalamic radiation, superior longitudinal fasciculus, inferior longitudinal fasciculus, fronto-occipital fasciculus, and internal capsule. Mean AD in the significant cluster was not associated with cerebral blood flow (CBF) in the region as measured by ASL, and was not associated with BMI or blood pressure. A cluster of lower AD was also found in the BD group when compared to MDD that had spatial overlap with the HV comparison. CONCLUSIONS: The results indicate a deficit of AD in BD when compared to MDD and HV groups. No association between AD values and either cerebral perfusion, BMI, or blood pressure was found in BD.


Assuntos
Transtorno Bipolar/patologia , Índice de Massa Corporal , Circulação Cerebrovascular/fisiologia , Transtorno Depressivo Maior/patologia , Substância Branca/patologia , Adulto , Transtorno Bipolar/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Cápsula Interna/diagnóstico por imagem , Cápsula Interna/patologia , Masculino , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
20.
Eur Neuropsychopharmacol ; 29(10): 1092-1101, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31488341

RESUMO

Individuals with both post-traumatic stress disorder and major depressive disorder (PTSD+MDD) often show greater social and occupational impairment and poorer treatment response than individuals with PTSD alone. Increasing evidence reveals that the amygdala, a brain region implicated in the pathophysiology of both of these conditions, is a complex of structurally and functionally heterogeneous nuclei. Quantifying the functional connectivity of two key amygdala subregions, the basolateral (BLA) and centromedial (CMA), in PTSD+MDD and PTSD-alone could advance our understanding of the neurocircuitry of these conditions. 18 patients with PTSD+MDD, 28 with PTSD-alone, and 50 trauma exposed healthy controls (TEHC), all from a cohort who survived the same large earthquake in China, underwent resting-state functional magnetic resonance imaging. Bilateral BLA and CMA functional connectivity (FC) maps were created using a seed-based approach for each participant. The analysis of covariance of FC was used to determine between-group differences. A significant interaction between amygdala subregion and diagnostic group suggested that differences in connectivity patterns between the two seeds were mediated by diagnosis. Post-hoc analyses revealed that PTSD+MDD patients showed weaker connectivity between right BLA and (a) left anterior cingulate cortex/supplementary motor area, and (b) bilateral putamen/pallidum, compared with PTSD-alone patients. Higher CMA connectivities left ACC/SMA were also observed in PTSD+MDD compared with PTSD-alone. An inverse relationship between the connectivity of right BLA with right putamen/pallidum and MDD symptoms was found in PTSD+MDD. These findings indicate a relationship between the neural pathophysiology of PTSD+MDD compared with PTSD-alone and TEHC and may inform future clinical interventions.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/fisiopatologia , Giro do Cíngulo/fisiopatologia , Putamen/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Adolescente , Adulto , China/epidemiologia , Comorbidade , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA