Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Craniofac Surg ; 33(3): 956-961, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34456284

RESUMO

OBJECTIVES: To investigate whether and how the long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) sponges microRNA-96 (miR-96) to achieve the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). METHODS: Protein levels were detected by Western blot. Mineralized bone matrix formation was studied by alizarin red staining. Metastasis-associated lung adenocarcinoma transcript 1, miR-96, and osteogenesis-related Messenger RNA expression was assessed by Quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The interactions between miR-96 and osterix (Osx), MALAT1, and miR-96 were determined by luciferase reporter assay. RESULTS: The expression of MALAT1 was upregulated whereas that of miR-96 was downregulated in osteogenic hBMSCs. In addition, the expression of MALAT1 significantly decreased whereas that of miR-96 increased in the hBMSCs of osteoporosis (OP) patients. qRT-PCR and alizarin red staining assays showed that MALAT1 silencing or miR-96 overexpression inhibits hBMSC osteogenic differentiation and vice versa. overexpression of miR-96 reversed the promotive effect of MALAT1 on the osteogenic differentiation of hBMSCs. Dual luciferase report assay verified that miR-96 is a regulatory target of MALAT1 and that Osx is a gene target of miR-96. CONCLUSIONS: Taken together, the results demonstrate that MALAT1 promotes the osteogenic differentiation of hBMSCs by regulating the miR-96/Osx axis. Our study provides novel mechanistic insights into the critical role of lncRNA MALAT1 as a microRNA sponge in OP patients and sheds new light on lncRNA-directed diagnostics and therapeutics in OP.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoblastos , Osteoporose , RNA Longo não Codificante , Fator de Transcrição Sp7 , Medula Óssea , Diferenciação Celular/genética , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Osteoblastos/citologia , Osteogênese/genética , RNA Longo não Codificante/genética , Fator de Transcrição Sp7/genética
2.
J Biomed Mater Res B Appl Biomater ; 108(8): 3402-3412, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32618100

RESUMO

Various bone substitutes have been applied in sinus augmentation (SA) to overcome insufficient bone height at the posterior maxilla region caused by pneumatized sinus and severe alveolar bone resorption after teeth loss. However, their effectiveness in SA needs to be further elucidated. In this study, strontium-doped brushite (Sr-DCPD), a new bone substitute, together with bovine-derived hydroxyapatite (bHA) and synthetic hydroxyapatite (sHA) was used in rabbit maxillary SA with simultaneous implant installation. The sinus space-keeping capacity, resorption rate, osteoconductivity, and mechanical properties of regenerated bone, were evaluated by micro-computed tomography (CT), histological analysis, and mechanical testing. Sr-DCPD exhibited the best osteoconductivity and new bone formation (<4 weeks), but its final bone regeneration and removal torque of implants at week 12 were the lowest, mainly due to its poor space-keeping capacity and fast resorption. bHA exhibited the best space-keeping capacity and slowest resorption rate, but relative lower final bone volume and mechanical properties, while sHA showed good space-keeping capacity, slower resorption rate, and the best final bone formation and mechanical properties. sHA was most effective for SA and bHA was also an acceptable bone substitute; however, Sr-DCPD was least effective and not suitable in SA by itself.


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos/química , Fosfatos de Cálcio/farmacologia , Durapatita/farmacologia , Levantamento do Assoalho do Seio Maxilar/métodos , Estrôncio/farmacologia , Animais , Condução Óssea , Regeneração Óssea/efeitos dos fármacos , Reabsorção Óssea , Fosfatos de Cálcio/química , Bovinos , Durapatita/química , Humanos , Masculino , Seio Maxilar/cirurgia , Fenômenos Mecânicos , Pessoa de Meia-Idade , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Coelhos , Estrôncio/química , Microtomografia por Raio-X
3.
Mol Cell Endocrinol ; 508: 110791, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32173349

RESUMO

Calcium/calmodulin-dependent protein kinases (CaMKs) are a group of important molecules mediating calcium signal transmission and have been proved to participate in osteoclastogenesis regulation. CaMKII, a subtype of CaMKs is expressed during osteoclast differentiation, but its role in osteoclastogenesis regulation remains controversial. In the present study, we identified that both mRNA and protein levels of CaMKII (δ) were upregulated in a time-dependent manner during osteoclast differentiation. CaMKII (δ) gene silencing significantly inhibited osteoclast formation, bone resorption, and expression of osteoclast-related genes, including nuclear factor of activated T cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and c-Src. Furthermore, CaMKII (δ) gene silencing downregulated phosphorylation of mitogen-activated protein kinases (MAPKs), including JNK, ERK, and p38, which were transiently activated by RANKL. Specific inhibitors of ERK, JNK, and p38 also markedly inhibited expression of osteoclast-related genes, osteoclast formation, and bone resorption like CaMKII (δ) gene silencing. Additionally, CaMKII (δ) gene silencing also suppressed RANKL-triggered CREB phosphorylation. Collectively, these data demonstrate the important role of CaMKII (δ) in osteoclastogenesis regulation through JNK, ERK, and p38 MAPKs and CREB pathway.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Osteoclastos/metabolismo , Osteogênese , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Inativação Gênica/efeitos dos fármacos , Camundongos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ligante RANK/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA