Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(22): 2428-2446.e9, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37652013

RESUMO

Thymus is necessary for lifelong immunological tolerance and immunity. It displays a distinctive epithelial complexity and undergoes age-dependent atrophy. Nonetheless, it also retains regenerative capacity, which, if harnessed appropriately, might permit rejuvenation of adaptive immunity. By characterizing cortical and medullary compartments in the human thymus at single-cell resolution, in this study we have defined specific epithelial populations, including those that share properties with bona fide stem cells (SCs) of lifelong regenerating epidermis. Thymic epithelial SCs display a distinctive transcriptional profile and phenotypic traits, including pleiotropic multilineage potency, to give rise to several cell types that were not previously considered to have shared origin. Using here identified SC markers, we have defined their cortical and medullary niches and shown that, in vitro, the cells display long-term clonal expansion and self-organizing capacity. These data substantively broaden our knowledge of SC biology and set a stage for tackling thymic atrophy and related disorders.


Assuntos
Células-Tronco , Timo , Humanos , Diferenciação Celular , Células-Tronco/metabolismo , Timo/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Atrofia/metabolismo
2.
Bioeng Transl Med ; 8(2): e10454, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925684

RESUMO

The human thymus is the site of T-cell maturation and induction of central tolerance. Hematopoietic stem cell (HSC)-derived progenitors are recruited to the thymus from the fetal liver during early prenatal development and from bone marrow at later stages and postnatal life. The mechanism by which HSCs are recruited to the thymus is poorly understood in humans, though mouse models have indicated the critical role of thymic stromal cells (TSC). Here, we developed a 3D microfluidic assay based on human cells to model HSC extravasation across the endothelium into the extracellular matrix. We found that the presence of human TSC consisting of cultured thymic epithelial cells (TEC) and interstitial cells (TIC) increases the HSC extravasation rates by 3-fold. Strikingly, incorporating TEC or TIC alone is insufficient to perturb HSC extravasation rates. Furthermore, we identified complex gene expressions from interactions between endothelial cells, TEC and TIC modulates the HSCs extravasation. Our results suggest that comprehensive signaling from the complex thymic microenvironment is crucial for thymus seeding and that our system will allow manipulation of these signals with the potential to increase thymocyte migration in a therapeutic setting.

3.
Nat Commun ; 11(1): 6372, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311516

RESUMO

The thymus is a primary lymphoid organ, essential for T cell maturation and selection. There has been long-standing interest in processes underpinning thymus generation and the potential to manipulate it clinically, because alterations of thymus development or function can result in severe immunodeficiency and autoimmunity. Here, we identify epithelial-mesenchymal hybrid cells, capable of long-term expansion in vitro, and able to reconstitute an anatomic phenocopy of the native thymus, when combined with thymic interstitial cells and a natural decellularised extracellular matrix (ECM) obtained by whole thymus perfusion. This anatomical human thymus reconstruction is functional, as judged by its capacity to support mature T cell development in vivo after transplantation into humanised immunodeficient mice. These findings establish a basis for dissecting the cellular and molecular crosstalk between stroma, ECM and thymocytes, and offer practical prospects for treating congenital and acquired immunological diseases.


Assuntos
Células Estromais , Timo/imunologia , Animais , Autoimunidade , Diferenciação Celular , Células Epiteliais/imunologia , Matriz Extracelular , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Ratos , Regeneração , Timócitos , Timo/patologia , Timo/transplante , Alicerces Teciduais
4.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779225

RESUMO

Protein kinase CK2 (CK2) is a highly conserved and ubiquitous kinase is involved in crucial biological processes, including proliferation, migration, and differentiation. CK2 holoenzyme is a tetramer composed by two catalytically active (α/α') and two regulatory (ß) subunits and exerts its function on a broad range of targets. In the brain, it regulates different steps of neurodevelopment, such as neural differentiation, neuritogenesis, and synaptic plasticity. Interestingly, CK2 mutations have been recently linked to neurodevelopmental disorders; however, the functional requirements of the individual CK2 subunits in neurodevelopment have not been yet investigated. Here, we disclose the role of CK2 on the migration and adhesion properties of GN11 cells, an established model of mouse immortalized neurons, by different in vitro experimental approaches. Specifically, the cellular requirement of this kinase has been assessed pharmacologically and genetically by exploiting CK2 inhibitors and by generating subunit-specific CK2 knockout GN11 cells (with a CRISPR/Cas9-based approach). We show that CK2α' subunit has a primary role in increasing cell adhesion and reducing migration properties of GN11 cells by activating the Akt-GSK3ß axis, whereas CK2α subunit is dispensable. Further, the knockout of the CK2ß regulatory subunits counteracts cell migration, inducing dramatic alterations in the cytoskeleton not observed in CK2α' knockout cells. Collectively taken, our data support the view that the individual subunits of CK2 play different roles in cell migration and adhesion properties of GN11 cells, supporting independent roles of the different subunits in these processes.


Assuntos
Caseína Quinase II/genética , Neurônios/citologia , Animais , Caseína Quinase II/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Mutação , Neurônios/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Neuroendocrinology ; 109(3): 193-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30504719

RESUMO

In mammals, fertility critically depends on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) by scattered hypothalamic neurons (GnRH neurons). During development, GnRH neurons originate in the nasal placode and migrate first into the nasal compartment and then through the nasal/forebrain junction, before they reach their final position in the hypothalamus. This neurodevelopmental process, which has been extensively studied in mouse models, is regulated by a plethora of factors that might control GnRH neuron migration or survival as well as the fasciculation/targeting of the olfactory/vomeronasal axons along which the GnRH neurons migrate. Defects in GnRH neuron development or release can lead to isolated GnRH deficiency, with the underlying genetic causes still being partially unknown. Recently, semaphorins and their receptors neuropilins and plexins, a large family of molecules implicated in neuronal development and plasticity, are emerging as key regulators of GnRH neuron biology and deficiency. Specifically, semaphorins have been shown to play different roles in GnRH neuron biology by regulating migration and survival during embryonic development as well as secretion in adulthood.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Semaforinas/metabolismo , Animais , Humanos , Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Neurônios/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA