Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 241(3): 1047-1061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087814

RESUMO

Woody biomass is a large carbon store in terrestrial ecosystems. In calculating biomass, tree stems are assumed to be solid structures. However, decomposer agents such as microbes and insects target stem heartwood, causing internal wood decay which is poorly quantified. We investigated internal stem damage across five sites in tropical Australia along a precipitation gradient. We estimated the amount of internal aboveground biomass damaged in living trees and measured four potential stem damage predictors: wood density, stem diameter, annual precipitation, and termite pressure (measured as termite damage in downed deadwood). Stem damage increased with increasing diameter, wood density, and termite pressure and decreased with increasing precipitation. High wood density stems sustained less damage in wet sites and more damage in dry sites, likely a result of shifting decomposer communities and their differing responses to changes in tree species and wood traits across sites. Incorporating stem damage reduced aboveground biomass estimates by > 30% in Australian savannas, compared to only 3% in rainforests. Accurate estimates of carbon storage across woody plant communities are critical for understanding the global carbon budget. Future biomass estimates should consider stem damage in concert with the effects of changes in decomposer communities and abiotic conditions.


Assuntos
Ecossistema , Florestas , Biomassa , Austrália , Árvores , Madeira , Carbono , Clima Tropical
2.
Ecol Lett ; 26(9): 1523-1534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330626

RESUMO

Despite host-fungal symbiotic interactions being ubiquitous in all ecosystems, understanding how symbiosis has shaped the ecology and evolution of fungal spores that are involved in dispersal and colonization of their hosts has been ignored in life-history studies. We assembled a spore morphology database covering over 26,000 species of free-living to symbiotic fungi of plants, insects and humans and found more than eight orders of variation in spore size. Evolutionary transitions in symbiotic status correlated with shifts in spore size, but the strength of this effect varied widely among phyla. Symbiotic status explained more variation than climatic variables in the current distribution of spore sizes of plant-associated fungi at a global scale while the dispersal potential of their spores is more restricted compared to free-living fungi. Our work advances life-history theory by highlighting how the interaction between symbiosis and offspring morphology shapes the reproductive and dispersal strategies among living forms.


Assuntos
Micorrizas , Simbiose , Animais , Humanos , Ecossistema , Fungos , Insetos , Plantas , Esporos Fúngicos
3.
Am J Bot ; 110(7): e16188, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37200535

RESUMO

PREMISE: Although changes in plant phenology are largely attributed to changes in climate, the roles of other factors such as genetic constraints, competition, and self-compatibility are underexplored. METHODS: We compiled >900 herbarium records spanning 117 years for all eight nominal species of the winter-annual genus Leavenworthia (Brassicaceae). We used linear regression to determine the rate of phenological change across years and phenological sensitivity to climate. Using a variance partitioning analysis, we assessed the relative influence of climatic and nonclimatic factors (self-compatibility, range overlap, latitude, and year) on Leavenworthia reproductive phenology. RESULTS: Flowering advanced by ~2.0 days and fruiting by ~1.3 days per decade. For every 1°C increase in spring temperature, flowering advanced ~2.3 days and fruiting ~3.3 days. For every 100 mm decrease in spring precipitation, each advanced ~6-7 days. The best models explained 35.4% of flowering variance and 33.9% of fruiting. Spring precipitation accounted for 51.3% of explained variance in flowering date and 44.6% in fruiting. Mean spring temperature accounted for 10.6% and 19.3%, respectively. Year accounted for 16.6% of flowering variance and 5.4% of fruiting, and latitude for 2.3% and 15.1%, respectively. Nonclimatic variables combined accounted for <11% of the variance across phenophases. CONCLUSIONS: Spring precipitation and other climate-related factors were dominant predictors of phenological variance. Our results emphasize the strong effect of precipitation on phenology, especially in the moisture-limited habitats preferred by Leavenworthia. Among the many factors that determine phenology, climate is the dominant influence, indicating that the effects of climate change on phenology are expected to increase.


Assuntos
Ecossistema , Reprodução , Estações do Ano , Temperatura , Plantas , Mudança Climática , Flores
4.
Trends Ecol Evol ; 38(1): 44-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35945074

RESUMO

Coevolution has driven speciation and evolutionary novelty in functional traits across the Tree of Life. Classic coevolutionary syndromes such as plant-pollinator, plant-herbivore, and host-parasite have focused strongly on the fitness consequences during the lifetime of the interacting partners. Less is known about the consequences of coevolved traits for ecosystem-level processes, in particular their 'afterlife' legacies for litter decomposition, nutrient cycling, and the functional ecology of decomposers. We review the mechanisms by which traits resulting from coevolution between plants and their consumers, microbial symbionts, or humans, and between microbial decomposers and invertebrates, drive plant litter decomposition pathways and rates. This supports the idea that much of current global variation in the decomposition of plant material is a legacy of coevolution.


Assuntos
Ecossistema , Plantas , Animais , Humanos , Plantas/genética , Plantas/metabolismo , Ecologia , Invertebrados , Fenótipo , Folhas de Planta/metabolismo , Solo , Nitrogênio/metabolismo
5.
Sci Data ; 9(1): 755, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477373

RESUMO

Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date.

6.
Science ; 377(6613): 1440-1444, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137034

RESUMO

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Assuntos
Florestas , Aquecimento Global , Isópteros , Madeira , Animais , Ciclo do Carbono , Temperatura , Clima Tropical , Madeira/microbiologia
7.
New Phytol ; 232(6): 2506-2519, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34379801

RESUMO

Recent studies have demonstrated that ecological processes that shape community structure and dynamics change along environmental gradients. However, much less is known about how the emergence of the gradients themselves shape the evolution of species that underlie community assembly. In this study, we address how the creation of novel environments leads to community assembly via two nonmutually exclusive processes: immigration and ecological sorting of pre-adapted clades (ISPC), and recent adaptive diversification (RAD). We study these processes in the context of the elevational gradient created by the uplift of the Central Andes. We develop a novel approach and method based on the decomposition of species turnover into within- and among-clade components, where clades correspond to lineages that originated before mountain uplift. Effects of ISPC and RAD can be inferred from how components of turnover change with elevation. We test our approach using data from over 500 Andean forest plots. We found that species turnover between communities at different elevations is dominated by the replacement of clades that originated before the uplift of the Central Andes. Our results suggest that immigration and sorting of clades pre-adapted to montane habitats is the primary mechanism shaping tree communities across elevations.


Assuntos
Biodiversidade , Ecossistema , Filogenia
8.
New Phytol ; 230(4): 1594-1608, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33341934

RESUMO

The tree seed mycobiome has received little attention despite its potential role in forest regeneration and health. The aim of the present study was to analyze the processes shaping the composition of seed fungal communities in natural forests as seeds transition from the mother plant to the ground for establishment. We used metabarcoding approaches and confocal microscopy to analyze the fungal communities of seeds collected in the canopy and on the ground in four natural populations of sessile oak (Quercus petraea). Ecological processes shaping the seed mycobiome were inferred using joint species distribution models. Fungi were present in seed internal tissues, including the embryo. The seed mycobiome differed among oak populations and trees within the same population. Its composition was largely influenced by the mother, with weak significant environmental influences. The models also revealed several probable interactions among fungal pathogens and mycoparasites. Our results demonstrate that maternal effects, environmental filtering and biotic interactions all shape the seed mycobiome of sessile oak. They provide a starting point for future research aimed at understanding how maternal genes and environments interact to control the vertical transmission of fungal species that could then influence seed dispersal and germination, and seedling recruitment.


Assuntos
Micobioma , Quercus , Florestas , Herança Materna , Sementes , Árvores
9.
Methods Mol Biol ; 2232: 113-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33161543

RESUMO

Assessment of endophytic and saprotrophic microbial communities from wood-extracted DNA presents challenges due to the presence of surface microbes that contaminate samples and plant compounds that act as inhibiting agents. Here, we describe a method for decontaminating, sampling, and processing wood at various stages of decay for high-throughput extraction and purification of DNA.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA/isolamento & purificação , Fungos/genética , Madeira/genética , DNA/genética , Fungos/classificação , Madeira/microbiologia
11.
Environ Microbiol ; 22(11): 4702-4717, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32840945

RESUMO

Diverse communities of fungi and bacteria in deadwood mediate wood decay. While rates of decomposition vary greatly among woody species and spatially distinct habitats, the relative importance of these factors in structuring microbial communities and whether these shift over time remains largely unknown. We characterized fungal and bacterial diversity within pieces of deadwood that experienced 6.3-98.8% mass loss while decaying in common garden 'rotplots' in a temperate oak-hickory forest in the Ozark Highlands, MO, USA. Communities were isolated from 21 woody species that had been decomposing for 1-5 years in spatially distinct habitats at the landscape scale (top and bottom of watersheds) and within stems (top and bottom of stems). Microbial community structure varied more strongly with wood traits than with spatial locations, mirroring the relative role of these factors on decay rates on the same pieces of wood even after 5 years. Co-occurring fungal and bacterial communities persistently influenced one another independently from their shared environmental conditions. However, the relative influence of wood construction versus spatial locations differed between fungi and bacteria, suggesting that life history characteristics of these clades structure diversity differently across space and time in decomposing wood.


Assuntos
Microbiota/fisiologia , Madeira/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Carya/microbiologia , Florestas , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Interações Microbianas , Missouri , Quercus/microbiologia , Fatores de Tempo , Madeira/classificação
12.
Proc Natl Acad Sci U S A ; 117(21): 11551-11558, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32404424

RESUMO

As the primary decomposers of organic material in terrestrial ecosystems, fungi are critical agents of the global carbon cycle. Yet our ability to link fungal community composition to ecosystem functioning is constrained by a limited understanding of the factors accounting for different wood decomposition rates among fungi. Here we examine which traits best explain fungal decomposition ability by combining detailed trait-based assays on 34 saprotrophic fungi from across North America in the laboratory with a 5-y field study comprising 1,582 fungi isolated from 74 decomposing logs. Fungal growth rate (hyphal extension rate) was the strongest single predictor of fungal-mediated wood decomposition rate under laboratory conditions, and accounted for up to 27% of the in situ variation in decomposition in the field. At the individual level, decomposition rate was negatively correlated with moisture niche width (an indicator of drought stress tolerance) and with the production of nutrient-mineralizing extracellular enzymes. Together, these results suggest that decomposition rates strongly align with a dominance-tolerance life-history trade-off that was previously identified in these isolates, forming a spectrum from slow-growing, stress-tolerant fungi that are poor decomposers to fast-growing, highly competitive fungi with fast decomposition rates. Our study illustrates how an understanding of fungal trait variation could improve our predictive ability of the early and midstages of wood decay, to which our findings are most applicable. By mapping our results onto the biogeographic distribution of the dominance-tolerance trade-off across North America, we approximate broad-scale patterns in intrinsic fungal-mediated wood decomposition rates.


Assuntos
Fungos/fisiologia , Madeira/microbiologia , Ciclo do Carbono/fisiologia , Ecossistema , Fungos/classificação , Fungos/enzimologia , Hifas/fisiologia , Micobioma/fisiologia , América do Norte
13.
Glob Chang Biol ; 26(2): 864-875, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31628697

RESUMO

Whether global change will drive changing forests from net carbon (C) sinks to sources relates to how quickly deadwood decomposes. Because complete wood mineralization takes years, most experiments focus on how traits, environments and decomposer communities interact as wood decay begins. Few experiments last long enough to test whether drivers change with decay rates through time, with unknown consequences for scaling short-term results up to long-term forest ecosystem projections. Using a 7 year experiment that captured complete mineralization among 21 temperate tree species, we demonstrate that trait effects fade with advancing decay. However, wood density and vessel diameter, which may influence permeability, control how decay rates change through time. Denser wood loses mass more slowly at first but more quickly with advancing decay, which resolves ambiguity about the after-life consequences of this key plant functional trait by demonstrating that its effect on decay depends on experiment duration and sampling frequency. Only long-term data and a time-varying model yielded accurate predictions of both mass loss in a concurrent experiment and naturally recruited deadwood structure in a 32-year-old forest plot. Given the importance of forests in the carbon cycle, and the pivotal role for wood decay, accurate ecosystem projections are critical and they require experiments that go beyond enumerating potential mechanisms by identifying the temporal scale for their effects.


Assuntos
Ecossistema , Madeira , Ciclo do Carbono , Florestas , Árvores
14.
Biol Rev Camb Philos Soc ; 95(2): 409-433, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31763752

RESUMO

Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.


Assuntos
Fungos/fisiologia , Plantas/microbiologia , Animais , Bases de Dados Factuais , Ecossistema , Fungos/genética
15.
Ecology ; 100(9): e02790, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228251

RESUMO

Environmental forces and biotic interactions, both positive and negative, structure ecological communities, but their relative roles remain obscure despite strong theory. For instance, ecologically similar species, based on the principle of limiting similarity, are expected to be most competitive and show negative interactions. Specious communities that assemble along broad environmental gradients afford the most power to test theory, but the communities often are difficult to quantify. Microbes, specifically fungal endophytes of wood, are especially suited for testing community assembly theory because they are relatively easy to sample across a comprehensive range of environmental space with clear axes of variation. Moreover, endophytes mediate key forest carbon cycle processes, and although saprophytic fungi from dead wood typically compete, endophytic fungi in living wood may enhance success through cooperative symbioses. To classify interactions within endophyte communities, we analyzed fungal DNA barcode variation across 22 woody plant species growing in woodlands near Richmond, New South Wales, Australia. We estimated the response of endophytes to the measured wood environment (i.e., 11 anatomical and chemical wood traits) and each other using latent-variable models and identified recurrent communities across wood environments using model-based classification. We used this information to evaluate whether (1) co-occurrence patterns are consistent with strong competitive exclusion, and (2) a priori classifications by trophic mode and phylum distinguish taxa that are more likely to have positive vs. negative associations under the principle of limiting similarity. Fungal endophytes were diverse (mean = 140 taxa/sample), with differences in community composition structured by wood traits. Variation in wood water content and carbon concentration were associated with especially large community shifts. Surprisingly, after accounting for wood traits, fungal species were still more than three times more likely to have positive than negative co-occurrence patterns. That is, patterns consistent with strong competitive exclusion were rare, and positive interactions among fungal endophytes were more common than expected. Confirming the frequency of positive vs. negative interactions among fungal taxa requires experimental tests, and our findings establish clear paths for further study. Evidence to date intriguingly suggests that, across a wide range of wood traits, cooperation may outweigh combat for these fungi.


Assuntos
Endófitos , Madeira , Austrália , DNA Fúngico , Ecossistema , Fungos
16.
PLoS One ; 13(5): e0196712, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29742158

RESUMO

When standing dead trees (snags) fall, they have major impacts on forest ecosystems. Snag fall can redistribute wildlife habitat and impact public safety, while governing important carbon (C) cycle consequences of tree mortality because ground contact accelerates C emissions during deadwood decay. Managing the consequences of altered snag dynamics in changing forests requires predicting when snags fall as wood decay erodes mechanical resistance to breaking forces. Previous studies have pointed to common predictors, such as stem size, degree of decay and species identity, but few have assessed the relative strength of underlying mechanisms driving snag fall across biomes. Here, we analyze nearly 100,000 repeated snag observations from boreal to subtropical forests across the eastern United States to show that wood decay controls snag fall in ways that could generate previously unrecognized forest-climate feedback. Warmer locations where wood decays quickly had much faster rates of snag fall. The effect of temperature on snag fall was so strong that in a simple forest C model, anticipated warming by mid-century reduced snag C by 22%. Furthermore, species-level differences in wood decay resistance (durability) accurately predicted the timing of snag fall. Differences in half-life for standing dead trees were similar to expected differences in the service lifetimes of wooden structures built from their timber. Strong effects of temperature and wood durability imply future forests where dying trees fall and decay faster than at present, reducing terrestrial C storage and snag-dependent wildlife habitat. These results can improve the representation of forest C cycling and assist forest managers by helping predict when a dead tree may fall.


Assuntos
Florestas , Árvores , Madeira , Previsões , Dureza , Modelos Biológicos , América do Norte , Risco , Temperatura , Vento
17.
New Phytol ; 218(4): 1697-1709, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603243

RESUMO

Nonlinear relationships between species and their environments are believed common in ecology and evolution, including during angiosperms' rise to dominance. Early angiosperms are thought of as woody evergreens restricted to warm, wet habitats. They have since expanded into numerous cold and dry places. This expansion may have included transitions across important environmental thresholds. To understand linear and nonlinear relationships between angiosperm structure and biogeographic distributions, we integrated large datasets of growth habits, conduit sizes, leaf phenologies, evolutionary histories, and environmental limits. We consider current-day patterns and develop a new evolutionary model to investigate processes that created them. The macroecological pattern was clear: herbs had lower minimum temperature and precipitation limits. In woody species, conduit sizes were smaller in evergreens and related to species' minimum temperatures. Across evolutionary timescales, our new modeling approach found conduit sizes in deciduous species decreased linearly with minimum temperature limits. By contrast, evergreen species had a sigmoidal relationship with minimum temperature limits and an inflection overlapping freezing. These results suggest freezing represented an important threshold for evergreen but not deciduous woody angiosperms. Global success of angiosperms appears tied to a small set of alternative solutions when faced with a novel environmental threshold.


Assuntos
Magnoliopsida/classificação , Filogeografia , Teorema de Bayes , Evolução Biológica , Ecossistema , Modelos Teóricos , Folhas de Planta/fisiologia , Característica Quantitativa Herdável
18.
Am J Bot ; 104(10): 1464-1473, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885221

RESUMO

PREMISE OF THE STUDY: Wood density is the top predictor of growth and mortality rates (vital rates) but with modest explanatory power at best. Stronger links to vital rates are expected if wood density is decomposed into its anatomical properties at sapling and adult stages, since saplings and adults differ in wood traits and vital rates. We examined whether anatomical determinants of wood density and strength of the relationship between wood traits and vital rates shift between saplings and adults. METHODS: Using wood segments from near pith (sapling) and near bark (adult) for 20 tree species (three adults each) from Barro Colorado Island, Panama, we quantified wood traits. Vital rates for saplings and adults were obtained from an earlier study. KEY RESULTS: Anatomical predictors of wood density were similar for sapling and adult wood, with wood density variation largely explained by fiber lumen area and fiber wall fraction. In sapling wood only, growth rates decreased with fiber wall fraction and increased with fiber lumen area, while mortality rates increased with vessel area but decreased with fiber wall fraction and vessel density. CONCLUSIONS: Wood traits of sapling trees provide functional insight into the growth-mortality tradeoff. Sapling wood with relatively large fiber lumen area and wide vessels, enabling faster hydraulic transport but less mechanical strength, is associated with fast growth and high mortality. Sapling wood with relatively more fiber wall and many narrow vessels, enabling greater mechanical strength but slower hydraulic transport, is associated with slow growth and low mortality.


Assuntos
Árvores/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento , Panamá , Fenótipo , Floresta Úmida , Plântula/anatomia & histologia , Plântula/crescimento & desenvolvimento , Árvores/anatomia & histologia , Madeira/anatomia & histologia
19.
PLoS One ; 11(10): e0163002, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27706180

RESUMO

Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers). According to the economic theory of comparative advantage, countries open to trade will be able to consume more-in terms of volume and diversity-if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country's plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a hotter and more crowded world.


Assuntos
Produção Agrícola/economia , Países em Desenvolvimento/economia , Abastecimento de Alimentos/economia , Internacionalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA