Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Intern Med J ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228114

RESUMO

Pushing selected information to clinicians, as opposed to the traditional method of clinicians pulling information from an electronic medical record, has the potential to improve care. A digital notification platform was designed by clinicians and implemented in a tertiary hospital to flag dysglycaemia. There were 112 patients included in the study, and the post-implementation group demonstrated lower rates of dysglycaemia (2.5% vs 1.1%, P = 0.038). These findings raise considerations for information delivery methods for multiple domains in contemporary healthcare.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39102101

RESUMO

Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.

3.
Food Chem ; 462: 140920, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39208732

RESUMO

The use of direct injection ion mobility mass spectrometry (DI-IM-MS) to detect and identify betacyanin pigments in A. hortensis 'rubra' extracts was explored for the first time, with results compared to conventional LC-MS/MS analysis. The anti-inflammatory activities of leaf and seed extracts, alongside purified amaranthin and celosianin pigments, were investigated using a model of lipopolysaccharide (LPS)-activated murine macrophages. Extracts and purified pigments significantly inhibited the production of prostaglandin E2 and NO by up to 90% and 70%, respectively, and reduced the expression of Il6, Il1b, Nos2, and Cox2. Leaf and seed extracts also decreased secretion of Il6 and Il1b cytokines and reduced protein levels of Nos2 and Cox2. Furthermore, extracts and purified pigments demonstrated potent dose-dependent radical scavenging activity in a cellular antioxidant activity assay (CAA) without any cytotoxic effects. Our research highlights the promising biological potential of edible, climate-resilient A. hortensis 'rubra' as a valuable source of bioactive compounds.

4.
Intern Emerg Med ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907756

RESUMO

Weekend discharges occur less frequently than discharges on weekdays, contributing to hospital congestion. Artificial intelligence algorithms have previously been derived to predict which patients are nearing discharge based upon ward round notes. In this implementation study, such an artificial intelligence algorithm was coupled with a multidisciplinary discharge facilitation team on weekend shifts. This approach was implemented in a tertiary hospital, and then compared to a historical cohort from the same time the previous year. There were 3990 patients included in the study. There was a significant increase in the proportion of inpatients who received weekend discharges in the intervention group compared to the control group (median 18%, IQR 18-20%, vs median 14%, IQR 12% to 17%, P = 0.031). There was a corresponding higher absolute number of weekend discharges during the intervention period compared to the control period (P = 0.025). The studied intervention was associated with an increase in weekend discharges and economic analyses support this approach as being cost-effective. Further studies are required to examine the generalizability of this approach to other centers.

5.
Leuk Res ; 139: 107469, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479337

RESUMO

BACKGROUND: The proteasome inhibitor bortezomib is one of the primary therapies used for the haematological malignancy multiple myeloma (MM). However, intrinsic or acquired resistance to bortezomib, via mechanisms that are not fully elucidated, is a barrier to successful treatment in many patients. Our previous studies have shown that elevated expression of the chemokine receptor CCR1 in MM plasma cells in newly diagnosed MM patients is associated with poor prognosis. Here, we hypothesised that the poor prognosis conferred by CCR1 expression is, in part, due to a CCR1-mediated decrease in MM plasma cell sensitivity to bortezomib. METHODS: In order to investigate the role of CCR1 in MM cells, CCR1 was knocked out in human myeloma cell lines OPM2 and U266 using CRISPR-Cas9. Additionally, CCR1 was overexpressed in the mouse MM cell line 5TGM1. The effect of bortezomib on CCR1 knockout or CCR1-overexpressing cells was then assessed by WST-1 assay, with or without CCL3 siRNA knockdown or addition of recombinant human CCL3. NSG mice were inoculated intratibially with OPM2-CCR1KO cells and were treated with 0.7 mg/kg bortezomib or vehicle twice per week for 3 weeks and GFP+ tumour cells in the bone marrow were quantitated by flow cytometry. The effect of CCR1 overexpression or knockout on unfolded protein response pathways was assessed using qPCR for ATF4, HSPA5, XBP1, ERN1 and CHOP and Western blot for IRE1α and p-Jnk. RESULTS: Using CCR1 overexpression or CRIPSR-Cas9-mediated CCR1 knockout in MM cell lines, we found that CCR1 expression significantly decreases sensitivity to bortezomib in vitro, independent of the CCR1 ligand CCL3. In addition, CCR1 knockout rendered the human MM cell line OPM2 more sensitive to bortezomib in an intratibial MM model in NSG mice in vivo. Moreover, CCR1 expression negatively regulated the expression of the unfolded protein response receptor IRE1 and downstream target gene XBP1, suggesting this pathway may be responsible for the decreased bortezomib sensitivity of CCR1-expressing cells. CONCLUSIONS: Taken together, these studies suggest that CCR1 expression may be associated with decreased response to bortezomib in MM cell lines.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Bortezomib/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Receptores de Quimiocinas , Endorribonucleases , Proteínas Serina-Treonina Quinases , Receptores CCR1/genética , Receptores CCR1/metabolismo
6.
Br J Cancer ; 130(1): 19-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884682

RESUMO

The side effects of cancer therapy continue to cause significant health and cost burden to the patient, their friends and family, and governments. A major barrier in the way in which these side effects are managed is the highly siloed mentality that results in a fragmented approach to symptom control. Increasingly, it is appreciated that many symptoms are manifestations of common underlying pathobiology, with changes in the gastrointestinal environment a key driver for many symptom sequelae. Breakdown of the mucosal barrier (mucositis) is a common and early side effect of many anti-cancer agents, known to contribute (in part) to a range of highly burdensome symptoms such as diarrhoea, nausea, vomiting, infection, malnutrition, fatigue, depression, and insomnia. Here, we outline a rationale for how, based on its already documented effects on the gastrointestinal microenvironment, medicinal cannabis could be used to control mucositis and prevent the constellation of symptoms with which it is associated. We will provide a brief update on the current state of evidence on medicinal cannabis in cancer care and outline the potential benefits (and challenges) of using medicinal cannabis during active cancer therapy.


Assuntos
Maconha Medicinal , Mucosite , Neoplasias , Humanos , Maconha Medicinal/efeitos adversos , Mucosite/tratamento farmacológico , Neoplasias/tratamento farmacológico , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Vômito , Microambiente Tumoral
7.
Brain Behav Immun ; 115: 229-247, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858741

RESUMO

Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.


Assuntos
Encefalopatias , Comprometimento Cognitivo Relacionado à Quimioterapia , Neoplasias , Adulto , Criança , Humanos , Encéfalo
8.
Br J Haematol ; 203(4): 614-624, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37699574

RESUMO

Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid-derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1-KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T-cell activity. Notably, tumour growth studies in mice treated with a small-molecule irreversible inhibitor of MPO (4-ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO-specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.


Assuntos
Mieloma Múltiplo , Peroxidase , Microambiente Tumoral , Animais , Camundongos , Medula Óssea/patologia , Modelos Animais de Doenças , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Mieloides/patologia , Peroxidase/metabolismo
9.
Biofilm ; 5: 100130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37274173

RESUMO

Surgical site infections (SSIs) are mainly caused by Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) biofilms. Biofilms are aggregates of bacteria embedded in a self-produced matrix that offers protection against antibiotics and promotes the spread of antibiotic-resistance in bacteria. Consequently, antibiotic treatment frequently fails, resulting in the need for alternative therapies. The present study describes the in vitro efficacy of the Cu(DDC)2 complex (2:1 M ratio of diethyldithiocarbamate (DDC-) and Cu2+) with additional Cu2+ against S. aureus and S. epidermidis biofilms in models mimicking SSIs and in vitro antibacterial activity of a liposomal Cu(DDC)2 + Cu2+ formulation. The in vitro activity on S. aureus and S. epidermidis biofilms grown on two hernia mesh materials and in a wound model was determined by colony forming unit (CFU) counting. Cu2+-liposomes and Cu(DDC)2-liposomes were prepared, and their antibacterial activity was assessed in vitro using the alamarBlue assay and CFU counting and in vivo using a Galleria mellonella infection model. The combination of 35 µM DDC- and 128 µM Cu2+ inhibited S. aureus and S. epidermidis biofilms on meshes and in a wound infection model. Cu(DDC)2-liposomes + free Cu2+ displayed similar antibiofilm activity to free Cu(DDC)2 + Cu2+, and significantly increased the survival of S. epidermidis-infected larvae. Whilst Cu(DDC)2 + Cu2+ showed substantial antibiofilm activity in vitro against clinically relevant biofilms, its application in mammalian in vivo models is limited by solubility. The liposomal Cu(DDC)2 + Cu2+ formulation showed antibiofilm activity in vitro and antibacterial activity and low toxicity in G. mellonella, making it a suitable water-soluble formulation for future application on infected wounds in animal trials.

10.
ANZ J Surg ; 93(9): 2119-2124, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37264548

RESUMO

BACKGROUND: This study aimed to examine the performance of machine learning algorithms for the prediction of discharge within 12 and 24 h to produce a measure of readiness for discharge after general surgery. METHODS: Consecutive general surgery patients at two tertiary hospitals, over a 2-year period, were included. Observation and laboratory parameter data were stratified into training, testing and validation datasets. Random forest, XGBoost and logistic regression models were evaluated. Each ward round note time was taken as a different event. Primary outcome was classification accuracy of the algorithmic model able to predict discharge within the next 12 h on the validation data set. RESULTS: 42 572 ward round note timings were included from 8826 general surgery patients. Discharge occurred within 12 h for 8800 times (20.7%), and within 24 h for 9885 (23.2%). For predicting discharge within 12 h, model classification accuracies for derivation and validation data sets were: 0.84 and 0.85 random forest, 0.84 and 0.83 XGBoost, 0.80 and 0.81 logistic regression. For predicting discharge within 24 h, model classification accuracies for derivation and validation data sets were: 0.83 and 0.84 random forest, 0.82 and 0.81 XGBoost, 0.78 and 0.79 logistic regression. Algorithms generated a continuous number between 0 and 1 (or 0 and 100), representing readiness for discharge after general surgery. CONCLUSIONS: A derived artificial intelligence measure (the Adelaide Score) successfully predicts discharge within the next 12 and 24 h in general surgery patients. This may be useful for both treating teams and allied health staff within surgical systems.


Assuntos
Inteligência Artificial , Alta do Paciente , Humanos , Algoritmos , Aprendizado de Máquina , Modelos Logísticos
12.
Intern Med J ; 53(5): 819-824, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880355

RESUMO

Multiple myeloma (MM) is a disease of older people, yet factors relating to comorbidity and frailty may threaten treatment tolerability for many of this heterogenous group. There has been increasing interest in defining specific and clinically relevant frailty assessment tools within the MM population, with the goal of using these frailty scores, not just as a prognostic instrument, but also as a predictive tool to allow for a frailty-adapted treatment approach. This paper reviews the various frailty assessment frameworks used in the evaluation of patients with MM, including the International Myeloma Working Group Frailty Index (IMWG-FI), the Mayo Frailty Index and the simplified frailty scale. While the IMWG-FI remains the most widely accepted tool, the simplified frailty scale is the most user-friendly in busy day-to-day clinics based on its ease of use. This paper summarises the recommendations from the Myeloma Scientific Advisory Group (MSAG) of Myeloma Australia, on the use of frailty assessment tools in clinical practice and proposes a frailty-stratified treatment algorithm to aid clinicians in tailoring therapy for this highly heterogeneous patient population.


Assuntos
Fragilidade , Mieloma Múltiplo , Humanos , Idoso , Fragilidade/epidemiologia , Mieloma Múltiplo/tratamento farmacológico , Idoso Fragilizado , Prognóstico , Comorbidade , Avaliação Geriátrica
13.
Cancer Metastasis Rev ; 42(1): 277-296, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36622509

RESUMO

Acute myeloid leukaemia (AML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM) are age-related haematological malignancies with defined precursor states termed myelodysplastic syndrome (MDS), monoclonal B-cell lymphocytosis (MBL), and monoclonal gammopathy of undetermined significance (MGUS), respectively. While the progression from asymptomatic precursor states to malignancy is widely considered to be mediated by the accumulation of genetic mutations in neoplastic haematopoietic cell clones, recent studies suggest that intrinsic genetic changes, alone, may be insufficient to drive the progression to overt malignancy. Notably, studies suggest that extrinsic, microenvironmental changes in the bone marrow (BM) may also promote the transition from these precursor states to active disease. There is now enhanced focus on extrinsic, age-related changes in the BM microenvironment that accompany the development of AML, CLL, and MM. One of the most prominent changes associated with ageing is the accumulation of senescent mesenchymal stromal cells within tissues and organs. In comparison with proliferating cells, senescent cells display an altered profile of secreted factors (secretome), termed the senescence-associated-secretory phenotype (SASP), comprising proteases, inflammatory cytokines, and growth factors that may render the local microenvironment favourable for cancer growth. It is well established that BM mesenchymal stromal cells (BM-MSCs) are key regulators of haematopoietic stem cell maintenance and fate determination. Moreover, there is emerging evidence that BM-MSC senescence may contribute to age-related haematopoietic decline and cancer development. This review explores the association between BM-MSC senescence and the development of haematological malignancies, and the functional role of senescent BM-MSCs in the development of these cancers.


Assuntos
Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Leucemia Mieloide Aguda/genética , Senescência Celular , Microambiente Tumoral
14.
Pharmaceutics ; 14(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559332

RESUMO

Prophylaxis and the treatment of surgical site infections (SSIs) with antibiotics frequently fail due to the antibiotic resistance of bacteria and the ability of bacteria to reside in biofilms (i.e., bacterial clusters in a protective matrix). Therefore, alternative antibacterial treatments are required to combat biofilm infections. The combination of diethyldithiocarbamate (DDC-) and copper ions (Cu2+) exhibited antibiofilm activity against the staphylococci species associated with SSIs; however, the formation of a water-insoluble Cu(DDC)2 complex limits its application to SSIs. Here, we describe the development and antibiofilm activity of an injectable gel containing a liposomal formulation of Cu(DDC)2 and Cu2+ (lipogel). Lyophilized liposomes were incorporated into a mixture of chitosan (CS) and beta-glycerophosphate (ßGP), and the thermosensitive gelling properties of CS-ßGP and the lipogel were determined. The liposomes remained stable after lyophilization over six months at 4-6 °C and -20 °C. The sol-gel transition of the gel and lipogel occurred between 33 and 39 °C, independently of sterilization or storage at -20 °C. CS-ßGP is biocompatible and the liposomes were released over time. The lipogel prevented biofilm formation over 2 days and killed 98.7% of the methicillin-resistant Staphylococcus aureus and 99.9% of the Staphylococcus epidermidis biofilms. Therefore, the lipogel is a promising new prophylaxis and treatment strategy for local application to SSIs.

15.
Front Microbiol ; 13: 999893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160243

RESUMO

Staphylococcus aureus and Staphylococcus epidermidis are associated with life-threatening infections. Despite the best medical care, these infections frequently occur due to antibiotic resistance and the formation of biofilms of these two bacteria (i.e., clusters of bacteria embedded in a matrix). As a consequence, there is an urgent need for effective anti-biofilm treatments. Here, we describe the antibacterial properties of a combination treatment of diethyldithiocarbamate (DDC) and copper ions (Cu2+) and their low toxicity in vitro and in vivo. The antibacterial activity of DDC and Cu2+ was assessed in vitro against both planktonic and biofilm cultures of S. aureus and S. epidermidis using viability assays, microscopy, and attachment assays. Cytotoxicity of DDC and Cu2+ (DDC-Cu2+) was determined using a human fibroblast cell line. In vivo antimicrobial activity and toxicity were monitored in Galleria mellonella larvae. DDC-Cu2+ concentrations of 8 µg/ml DDC and 32 µg/ml Cu2+ resulted in over 80% MRSA and S. epidermidis biofilm killing, showed synergistic and additive effects in both planktonic and biofilm cultures of S. aureus and S. epidermidis, and synergized multiple antibiotics. DDC-Cu2+ inhibited MRSA and S. epidermidis attachment and biofilm formation in the xCELLigence and Bioflux systems. In vitro and in vivo toxicity of DDC, Cu2+ and DDC-Cu2+ resulted in > 70% fibroblast viability and > 90% G. mellonella survival. Treatment with DDC-Cu2+ significantly increased the survival of infected larvae (87% survival of infected, treated larvae vs. 47% survival of infected, untreated larvae, p < 0.001). Therefore, DDC-Cu2+ is a promising new antimicrobial with activity against planktonic and biofilm cultures of S. epidermidis and S. aureus and low cytotoxicity in vitro. This gives us high confidence to progress to mammalian animal studies, testing the antimicrobial efficacy and safety of DDC-Cu2+.

16.
Sci Rep ; 12(1): 13128, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908046

RESUMO

Multiple myeloma (MM) is an incurable haematological malignancy, caused by the uncontrolled proliferation of plasma cells within the bone marrow (BM). Obesity is a known risk factor for MM, however, few studies have investigated the potential of dietary intervention to prevent MM progression. Calorie restriction (CR) is associated with many health benefits including reduced cancer incidence and progression. To investigate if CR could reduce MM progression, dietary regimes [30% CR, normal chow diet (NCD), or high fat diet (HFD)] were initiated in C57BL/6J mice. Diet-induced changes were assessed, followed by inoculation of mice with Vk*MYC MM cells (Vk14451-GFP) at 16 weeks of age. Tumour progression was monitored by serum paraprotein, and at endpoint, BM and splenic tumour burden was analysed by flow cytometry. 30% CR promoted weight loss, improved glucose tolerance, increased BM adiposity and elevated serum adiponectin compared to NCD-fed mice. Despite these metabolic changes, CR had no significant effect on serum paraprotein levels. Furthermore, endpoint analysis found that dietary changes were insufficient to affect BM tumour burden, however, HFD resulted in an average two-fold increase in splenic tumour burden. Overall, these findings suggest diet-induced BM changes may not be key drivers of MM progression in the Vk14451-GFP transplant model of myeloma.


Assuntos
Neoplasias da Medula Óssea , Mieloma Múltiplo , Doenças não Transmissíveis , Neoplasias Esplênicas , Animais , Restrição Calórica/métodos , Dieta Hiperlipídica , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/complicações , Obesidade/metabolismo , Paraproteínas
17.
Biofabrication ; 14(2)2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35226893

RESUMO

Stem cell therapy using mesenchymal stem/stromal cells (MSCs) represents a novel approach to treating severe diseases, including osteoarthritis. However, the therapeutic benefit of MSCs is highly dependent on their differentiation state, which can be regulated by many factors. Herein, three-dimensional (3D) magnetic scaffolds were successfully fabricated by incorporating magnetic nanoparticles (MNPs) into electrospun gelatin nanofibers. When positioned near a rotating magnet (f= 0.5 Hz), the magnetic scaffolds with the embedded MSCs were driven upward/downward in the culture container, which induced mechanical stimulation to MSCs due to spatial confinement and fluid flow. The extracellular matrix-mimicking scaffold and the alternating magnetic field significantly enhanced chondrogenesis instead of osteogenesis. Furthermore, the fiber topography could be tuned with different compositions of the coating layer on MNPs, and the topography had a significant impact on MSC differentiation. Selective up-regulation of chondrogenesis-related genes (COL2A1andACAN) was found for the magnetic scaffolds with citric acid-coated MNPs (CAG). In contrast, osteogenesis-related genes (RUNX2andSPARC) were selectively and significantly up-regulated for the magnetic scaffolds with polyvinylpyrrolidone-coated MNPs. Prior to implantationin vivo, chondrogenic preconditioning of MSCs within the CAG scaffolds under a dynamic magnetic field resulted in superior osteochondral repair. Hence, the magnetic scaffolds together with an in-house rotating magnet device could be a novel platform to initiate multiple stimuli on stem cell differentiation for effective repair of osteochondral defects.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Diferenciação Celular , Fenômenos Magnéticos , Osteogênese/fisiologia , Alicerces Teciduais
18.
Mol Oncol ; 16(6): 1221-1240, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34245117

RESUMO

Multiple myeloma (MM) is the second most common haematological malignancy and is an incurable disease of neoplastic plasma cells (PC). Newly diagnosed MM patients currently undergo lengthy genetic testing to match chromosomal mutations with the most potent drug/s to decelerate disease progression. With only 17% of MM patients surviving 10-years postdiagnosis, faster detection and earlier intervention would unequivocally improve outcomes. Here, we show that the cell surface protein desmoglein-2 (DSG2) is overexpressed in ~ 20% of bone marrow biopsies from newly diagnosed MM patients. Importantly, DSG2 expression was strongly predictive of poor clinical outcome, with patients expressing DSG2 above the 70th percentile exhibiting an almost 3-fold increased risk of death. As a prognostic factor, DSG2 is independent of genetic subtype as well as the routinely measured biomarkers of MM activity (e.g. paraprotein). Functional studies revealed a nonredundant role for DSG2 in adhesion of MM PC to endothelial cells. Together, our studies suggest DSG2 to be a potential cell surface biomarker that can be readily detected by flow cytometry to rapidly predict disease trajectory at the time of diagnosis.


Assuntos
Células Endoteliais , Mieloma Múltiplo , Desmogleína 2/genética , Desmogleína 2/metabolismo , Células Endoteliais/metabolismo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética
19.
Cell Rep ; 37(8): 110058, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818538

RESUMO

Mouse hematopoietic tissues contain abundant tissue-resident macrophages that support immunity, hematopoiesis, and bone homeostasis. A systematic strategy to characterize macrophage subsets in mouse bone marrow (BM), spleen, and lymph node unexpectedly reveals that macrophage surface marker staining emanates from membrane-bound subcellular remnants associated with unrelated cells. Intact macrophages are not present within these cell preparations. The macrophage remnant binding profile reflects interactions between macrophages and other cell types in vivo. Depletion of CD169+ macrophages in vivo eliminates F4/80+ remnant attachment. Remnant-restricted macrophage-specific membrane markers, cytoplasmic fluorescent reporters, and mRNA are all detected in non-macrophage cells including isolated stem and progenitor cells. Analysis of RNA sequencing (RNA-seq) data, including publicly available datasets, indicates that macrophage fragmentation is a general phenomenon that confounds bulk and single-cell analysis of disaggregated hematopoietic tissues. Hematopoietic tissue macrophage fragmentation undermines the accuracy of macrophage ex vivo molecular profiling and creates opportunity for misattribution of macrophage-expressed genes to non-macrophage cells.


Assuntos
Separação Celular/métodos , Macrófagos/citologia , Análise de Célula Única/métodos , Animais , Medula Óssea/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Homeostase , Camundongos
20.
Intern Med J ; 51(10): 1707-1712, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34664367

RESUMO

Imaging modalities for multiple myeloma (MM) have evolved to enable earlier detection of disease. Furthermore, the diagnosis of MM requiring therapy has recently changed to include disease prior to bone destruction, specifically the detection of focal bone lesions. Focal lesions are early, abnormal areas in the bone marrow, which may signal the development of subsequent lytic lesions that typically occur within the next 18-24 months. Cross-sectional imaging modalities are more sensitive for the detection and monitoring of bone and bone marrow disease and are now included in the International Myeloma Working Group current consensus criteria for initial diagnosis and treatment response assessment. The aim of this consensus practice statement is to review the evidence supporting these modalities. A more detailed Position Statement can be found on the Myeloma Australia website.


Assuntos
Mieloma Múltiplo , Paraproteinemias , Consenso , Diagnóstico por Imagem , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/terapia , Plasmócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA