Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25261, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327467

RESUMO

Due to its nutritional and bioactive content, tomato pomace (TP) remains among the world's richest fruits and vegetables. Tomatoes and TP (generated coproduct) are a very rich source of lycopene and other carotenoid compounds and contain an essential amount of polyphenols, policosanol, phytosterols, organic acids, dietary fibers, minerals, and vitamins. TP is a promising source of significant bioactive compounds with antioxidant and antimicrobial potential. Therefore, their consumption is known to be effective in preventing certain chronic diseases. For example, lycopene prevents prostate cancer and acts as a hepatoprotector and genoprotector against mycotoxins, pesticide residues, and heavy metals. Thus, the valorization of TP as a food ingredient can be of great health, economic and environmental interest and contribute to improving nutrition and food security. During the last decades, considerable efforts have been made to valorize TP as a crucial functional ingredient in improving: (i) the nutritional and functional properties, (ii) sensory characteristics and (iii) the shelf life of many foods. The current review aims to update and summarize the knowledge on the recent food applications of TP, particularly its use as a functional ingredient to improve the functional properties and shelf life of foods.

2.
Food Sci Nutr ; 12(2): 907-920, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370066

RESUMO

The tallow or butter tree (Pentadesma butyracea Sabine) is a ligneous forest species of multipurpose use largely distributed in Sub-Sahara Africa. Owing to the biological properties of different parts of the tree and physicochemical properties, as well as the numerous benefits of its fruits, research on P. butyracea products, especially kernels and butter, has now gained more interest. Thus, the scientific literature revealed that Pentadesma butter is a more promising product with good physical and technological characteristics. It is traditionally preferred in households for food, medicine, and cosmetic use. Apart from the fruits, all other parts of the butter tree are used by local communities in folk medicine. The existing studies indicated that P. butyracea contains valuable health-promoting compounds such as phenolic compounds, vitamins, minerals, and essential fatty acids. P. butyracea and derived products have antioxidant, antimicrobial, anti-inflammatory, antiplasmodial, antitumor, estrogenic, anti-androgenic, and cholesterol-regulative effects. Since studies on the biological properties of the tree parts, nutritional composition, and physicochemical properties of food products from the tree have been very limited, this review attempts to summarize some results from recent investigations. Our intention in the present review was to give an overview of the biological activities of plants and an account of the potential properties of Pentadesma products (pulp, kernels, and butter) and outline the way for future relevant research to improve their state of knowledge.

3.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477284

RESUMO

Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.

4.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770579

RESUMO

The current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.

5.
J Food Sci ; 87(10): 4394-4415, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36112569

RESUMO

Date plum (Diospyrus lotus L.) is an edible fruit from the Ebenaceae family, rich in nutrients, and having tremendous medicinal properties. This paper attempted to show the influence of different parameters of convective drying such as temperature (50, 60, 70, and 80°C) and air velocity (0.5, 1.0, and 1.5 m/s) on the shrinkage and microstructure, rehydration properties, antioxidant activity, and phenolic compounds of date plum. The drying caused significant changes in the color, actual size, and distribution of the fruit cells of date plum. The total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) of fresh date plum were 0.81 ± 0.00 mg GAE/g, 0.23 ± 0.10 mg ECE/g, 7.15 ± 1.09 mmol ISE/g, and 14.92 ± 0.88 mmol/TE, respectively. The drying at 70°C had the highest values of TPC, TFC, gallic acid, chlorogenic and syringic acids, catechin, quercetin-3-glucoside, resveratrol, and DPPH. The drying air velocities showed no significant effects on the antioxidant contents and the antioxidant activity. Of the models applied to the drying kinetics, the Midilli model was found as the best model to describe the drying kinetics of date plum. In addition, the Weibull model was found as the most successful among the models applied to the rehydration kinetics of date plum. According to the achieved findings, the convective drying temperature of 70°C is the optimum temperature to produce the dehydrated date plum. Practical Application This work has revealed the drying conditions responsible for preserving the phenolic compounds, total flavonoid content, and antioxidant features of D. lotus L. The study found the optimum drying conditions, and Midilli and Weibull models were the most fitted models to describe the drying and rehydration behaviors of D. lotus L. fruits, respectively. The drying provides a reasonable value of the possibility of continuous consumption of the fruits dried afforded on off-seasons. The dried fruits are widely used for multipurpose and have been extensively used in food industries due to their rich nutraceutical and antioxidant compounds.


Assuntos
Catequina , Diospyros , Prunus domestica , Antioxidantes/análise , Frutas/química , Prunus domestica/química , Ácido Clorogênico/análise , Resveratrol/análise , Catequina/análise , Extratos Vegetais/química , Fenóis/análise , Flavonoides/análise , Hidratação
6.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930325

RESUMO

Nowadays, during the current COVID-19 pandemic, consumers increasingly seek foods that not only fulfill the basic need (i.e., satisfying hunger) but also enhance human health and well-being. As a result, more attention has been given to some kinds of foods, termed "superfoods," making big claims about their richness in valuable nutrients and bioactive compounds as well as their capability to prevent illness, reinforcing the human immune system, and improve overall health.This review is an attempt to uncover truths and myths about superfoods by giving examples of the most popular foods (e.g., berries, pomegranates, watermelon, olive, green tea, several seeds and nuts, honey, salmon, and camel milk, among many others) that are commonly reported as having unique nutritional, nutraceutical, and functional characteristics.While superfoods have become a popular buzzword in blog articles and social media posts, scientific publications are still relatively marginal. The reviewed findings show that COVID-19 has become a significant driver for superfoods consumption. Food Industry 4.0 innovations have revolutionized many sectors of food technologies, including the manufacturing of functional foods, offering new opportunities to improve the sensory and nutritional quality of such foods. Although many food products have been considered superfoods and intensively sought by consumers, scientific evidence for their beneficial effectiveness and their "superpower" are yet to be provided. Therefore, more research and collaboration between researchers, industry, consumers, and policymakers are still needed to differentiate facts from marketing gimmicks and promote human health and nutrition.

7.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35950635

RESUMO

Food Traceability 4.0 (FT 4.0) is about tracing foods in the era of the fourth industrial revolution (Industry 4.0) with techniques and technologies reflecting this new revolution. Interest in food traceability has gained momentum in response to, among others events, the outbreak of the COVID-19 pandemic, reinforcing the need for digital food traceability that prevents food fraud and provides reliable information about food. This review will briefly summarize the most common conventional methods available to determine food authenticity before highlighting examples of emerging techniques that can be used to combat food fraud and improve food traceability. A particular focus will be on the concept of FT 4.0 and the significant role of digital solutions and other relevant Industry 4.0 innovations in enhancing food traceability. Based on this review, a possible new research topic, namely FT 4.0, is encouraged to take advantage of the rapid digitalization and technological advances occurring in the era of Industry 4.0. The main FT 4.0 enablers are blockchain, the Internet of things, artificial intelligence, and big data. Digital technologies in the age of Industry 4.0 have significant potential to improve the way food is traced, decrease food waste and reduce vulnerability to fraud opening new opportunities to achieve smarter food traceability. Although most of these emerging technologies are still under development, it is anticipated that future research will overcome current limitations making large-scale applications possible.

8.
Foods ; 10(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34681335

RESUMO

Autumn olive fruits were osmo-dehydrated in sucrose solution at 70 °C under vacuum and atmospheric pressure. The mass transfer kinetics data were applied to the models of Azuara, Crank, Page, and Peleg. The Peleg model was the best-fitted model to predict the water loss and solid gain of both treatments. The vacuum application decreased the effective diffusivities from 2.19 × 10-10 to 1.55 × 10-10 m2·s-1 for water loss and from 0.72 × 10-10 to 0.62 × 10-10 m2·s-1 for sugar gain. During the osmotic dehydration processes, the water activity decreased and stabilized after 5 h, while the bulk densities increased from 1.04 × 103 to 1.26 × 103 kg/m3. Titratable acidity gradually reduced from 1.14 to 0.31% in the atmospheric pressure system and from 1.14 to 0.51% in the vacuum system. pH increased significantly in both systems. Good retention of lycopene was observed even after 10 h of treatments. For the color parameters, the lightness decreased and stabilized after 30 min. In comparison, the redness and yellowness increased in the first 30 min and gradually decreased towards the initial levels in the fresh fruit.

9.
Foods ; 10(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208732

RESUMO

Cornsilk is maize waste containing phenolic compounds. In this study, freeze-drying, spray-drying, and microwave-drying techniques were evaluated for the encapsulation of cornsilk's phenolic compounds using maltodextrin as wall material. The results of antioxidant properties showed that freeze-drying was more efficient than microwave-drying and spray-drying techniques. The highest recovery of phenolic compounds was obtained with freeze-drying. The microstructure, DSC, and FTIR data showed that the encapsulation process was effective, and freeze-drying was the best drying technique. The physical properties of the microparticles greatly changed with the drying techniques. This study revealed that the phenolic compounds of the cornsilk extract can be successfully encapsulated and valorized.

10.
Foods ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067938

RESUMO

Autumn olive fruits are a rich source of nutrients and functional compounds, making them functional foods against many diseases and cancers. To increase the consumption, its processing, and its transformation into new products would help spread them to the consumer's table. In this study, after giving an overview of the physicochemical characteristics and the antioxidant activity, the objective was to optimize the osmotic dehydration (OD) of the berries. Response surface methodology was used to investigate the effect of dehydration factors: syrup concentration (30-70%), temperature (20-70 °C), and fruit-to-syrup ratio (1:10-2:10) on the water loss (WL), sugar gain (SG), weight reduction (WR), density (ρ), water activity (aw), and total color change (ΔE) of fruits after 10 h of OD. Results obtained by employing Box-Behnken design (three variables, three levels), and significant terms of regression equations indicated that the syrup concentration and temperature variation are the most affecting factors on the previously mentioned independent variables (WL SG, WR, ρ, aw, and ΔE). Fruits to syrup ratio appeared to have a significant effect only on WL. Under the optimum conditions found (70%, 70 °C, 1.8:10), the predicted values were 59.21%. 19.21%, 32.34%, 1.22 g/cm3, 0.850, and 3.65 for WL, SG, WR, ρ, aw, and ΔE, respectively.

11.
Molecules ; 27(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011365

RESUMO

Borage flower (Echium amoenum), an annual herb native to the Mediterranean region, is an excellent source of anthocyanins and is widely used in various forms due to its biological activities. In the present study, a choline chloride and glycerol (CHGLY)-based natural deep eutectic solvent (NADES) was applied in order to extract the anthocyanins from borage flowers. The traditional solvents, including water, methanol, and ethanol, were used to evaluate the efficiency of CHGLY. The results showed that CHGLY was highly efficient compared to the traditional solvents, providing the highest amounts of the total anthocyanin content (TAC), total phenolic content (TPC), total flavonoid content (TFC), individual anthocyanins, and antioxidant activity (DPPH radical scavenging (DPPH) and ferric-reducing antioxidant power (FRAP) assays). The most dominant anthocyanin found in studied borage was cyanidin-3-glucoside, followed by cyanin chloride, cyanidin-3-rutinoside, and pelargonidin-3-glucoside. The bioavailability % was 71.86 ± 0.47%, 77.29 ± 0.57%, 80.22 ± 0.65%, and 90.95 ± 1.01% for cyanidin-3-glucoside, cyanidin-3-rutinoside, by pelargonidin-3-glucoside and cyanin chloride, respectively. However, cyanidin-3-glucoside was the anthocyanin compound showing the highest stability (99.11 ± 1.66%) in the gastrointestinal environment. These results suggested that choline chloride and glycerol-based NADES is not only an efficient, eco-friendly solvent for the extraction of anthocyanins but can also be used to increase the bioavailability of anthocyanins.


Assuntos
Antocianinas/química , Borago/química , Extratos Vegetais/química , Antocianinas/análise , Cloretos/química , Colina/química , Solventes Eutéticos Profundos/química , Flores/química , Glicerol/química , Hidrólise , Oxirredução
12.
Molecules ; 25(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824080

RESUMO

Deep eutectic solvents (DESs) have got huge interest as new green and sustainable solvents for the extraction of bioactive compounds from plants in recent decades. In the present study, we aimed to investigate the effectiveness of hydrophilic DES for the extraction of anthocyanin and polyphenol antioxidants from Roselle. A natural hydrophilic DES constituted of sodium acetate (hydrogen bond acceptor) and formic acid (hydrogen bond donor) designed to evaluate the total phenolic compound (TPC), total flavonoid (TFC), total anthocyanin (TACN), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric reducing antioxidant power (FRAP) values of Roselle. Distilled water, 70% ethanol, and 80% methanol used as conventional solvents for comparison. The results indicated that the DES prepared in molarity ratio (SAFAm) was the most efficient. Subsequently, this prominent DES selected for the optimization and the optimum extraction conditions were 1:3.6 molarity ratio, 0% additional water, and 10 mL solvent. TPC, TFC, TACN, FRAP, and DPPH radical scavenging at the optimum point were 233.26 mg GAE/g, 10.14 mg ECE/g, 10.62 mg D3S/g, 493.45 mmol ISE/g, and 343.41 mmol TE/g, respectively. The stability tests showed that anthocyanins were more stable in SAFAm. These findings revealed that SAFAm is an effective green solvent for the extraction of polyphenols from various plants.


Assuntos
Antocianinas/química , Antioxidantes/química , Etanol/química , Hibiscus/química , Metanol/química , Fenóis/química , Extratos Vegetais/química , Estabilidade de Medicamentos
13.
Food Res Int ; 133: 109133, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32466910

RESUMO

Roselle (Hibiscus sabdariffa L.) is an edible flower belonging to the large family of Malvaceae. Aroma is one of the crucial parameters to determine the final tea overall quality and the consumer's preference and it is affected by different processing factors (drying, heating, brewing etc.). The aim of this study was to compare hot and cold brewing procedures on the aroma and aroma-active compounds of Beninese Roselle for the first time. Three different infusions were prepared and coded as R16M (16 min/98 °C), R40M (40 min/98 °C) and R24H (24 h/at ambient temperature). The aroma compounds of the infusion samples were extracted by liquid liquid extraction (LLE) method and determined by gas chromatography-mass spectrometry (GC-MS). A total of 38, 38 and 39 aroma compounds including alcohols, furans, acids, ketones, aldehydes, volatile phenols, lactones, pyranone, pyrrole, terpene and ester were detected in R16M, R40M and R24H infusions, respectively. The total aroma concentration of the cold infusion sample (R24H) was higher than those of two hot infusions. A significant reduction was found in the amount of these compounds in the sample prepared by hot infusion with 16 min (R16M). In all three samples, furans were identified as the dominant aroma group followed by alcohols. Based on the results of the aroma extract dilution analysis (AEDA), a total of 22 and 23 different key odorants were detected in hot infusions (R16M and R40M) and cold infusion (R24H) (ambient temperature), respectively. The powerful key odorants with regard to FD (flavor dilution) factors in all samples were prevailingly furans, alcohols, and aldehydes. The highest FD factors were found in furfural and 5-methyl-2-furfural providing caramel and bready notes. Principal component analysis (PCA) showed that Roselle infusions could clearly be discriminated in terms of their aroma profiles. The findings of this study demonstrate that the brewing procedures have a important impact on the final aroma and key odorants of Roselle infusions.


Assuntos
Flores/química , Hibiscus/química , Odorantes/análise , Chá/química , Temperatura , Temperatura Baixa , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura Alta , Olfatometria/métodos , Análise de Componente Principal , Compostos Orgânicos Voláteis/análise
14.
J Agric Food Chem ; 67(9): 2607-2616, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30758196

RESUMO

Infusion-induced changes in the aroma and key odorants and their odor activity values of Iranian endemic herbal (Gol-Gavzaban) tea obtained from shade-dried violet-blue petals of borage ( Echium amoenum) were studied for the first time. Two hot teas and one cold tea were investigated and coded as 4MN (4 min/98 °C), 16MN (16 min/98 °C), and 24HR (24 h/ambient temperature), respectively. Aromatic extracts of the tea samples were isolated by the liquid-liquid extraction method and analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for the first time. According to the results of the aroma profiling, a total of 35 common aroma compounds comprising alcohols, acids, volatile phenols, lactones, aldehydes, ketone, pyrroles, and furans were identified and quantified in the tea samples. Indeed, it is worth noting that the aroma profiles of the borage teas were similar. However, the effects of the infusion techniques were clearly different as observed on the content of each individual and total compounds in the samples. The highest mean total concentration was detected in 24HR (266.0 mg/kg), followed by 16MN (247.1 mg/kg) and 4MN (216.1 mg/kg). 1-Penten-3-ol was the principal volatile component in all borage teas. On the basis of the result of the flavor dilution (FD) factors, a combined total of 22 different key odorants was detected. The potential key odorants with regard to FD factors in all samples were prevailingly alcohols, acids, and terpenes. The highest FD factors were observed in 2-hexanol (2048 in 4MN and 24HR; 1024 in 16MN) and 1-penten-3-ol (2048 in 24HR; 1024 in 4MN and 16MN) in samples providing herbal and green notes. Principal component analysis (PCA) showed that the tea samples could clearly be discriminated in terms of their aroma profiles and key odorants. The findings of the current study demonstrate that the tea preparation conditions have a significant impact on the organoleptic quality of borage tea.


Assuntos
Echium/química , Flores/química , Odorantes/análise , Extratos Vegetais/química , Chás de Ervas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Irã (Geográfico) , Olfatometria/métodos , Temperatura , Compostos Orgânicos Voláteis/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA