Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 101(8): 382-392, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224567

RESUMO

This study aims to evaluate the effect of diclofenac addition to the preservation solution Celsior on liver graft preservation. Liver from Wistar rats were cold flushed in situ, harvested, and then stored in Celsior solution (24 h, 4 °C) supplemented or not with 50 mg/L of diclofenac sodium salt. Reperfusion was performed (120 min, 37 °C) using the isolated perfusion rat liver model. Perfusate samples were collected to evaluate transaminases' activities after cold storage and by the end of reperfusion. To evaluate liver function, bile flow, hepatic clearance of bromosulfophthalein, and vascular resistance were assessed. Diclofenac scavenging property (DPPH assay) as well as oxidative stress parameters (SOD and MPO activities and the concentration of glutathione, conjugated dienes, MDA, and carbonylated proteins) were measured. Transcription factors (PPAR-γ and NF-κB), inflammation (COX-2, IL-6, HMGB-1, and TLR-4), as well as apoptosis markers (Bcl-2 and Bax) were determined by quantitative RT-PCR. Enriching the preservation solution Celsior with diclofenac sodium salt attenuated liver injuries and improved graft function. Oxidative stress, inflammation, and apoptosis were significantly reduced in Celsior + Diclo solution. Also, diclofenac activated PPAR-γ and inhibited NF-κB transcription factors. To decrease graft damage and improve transplant recovery, diclofenac sodium salt may be a promising additive to preservation solution.


Assuntos
Soluções para Preservação de Órgãos , Traumatismo por Reperfusão , Ratos , Animais , Diclofenaco/farmacologia , Soluções para Preservação de Órgãos/farmacologia , Soluções para Preservação de Órgãos/metabolismo , NF-kappa B/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Ratos Wistar , Fígado , Glutationa/metabolismo , Inflamação/metabolismo , Traumatismo por Reperfusão/metabolismo , Preservação de Órgãos
2.
Inflammation ; 46(4): 1221-1235, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36933163

RESUMO

Ischemia/reperfusion injury (IRI) is an inevitable complication of liver surgery and transplantation. The purpose of this study was to examine the beneficial effects of diclofenac on hepatic IRI and the mechanism behind it. Wistar rats' livers were subjected to warm ischemia for 60 min followed by 24 h of reperfusion. Diclofenac was administered intravenously 15 min before ischemia at 10, 20, and 40 mg/kg body weight. To determine the mechanism of diclofenac protection, the NOS inhibitor L-Nitro-arginine methyl ester (L-NAME) was administered intravenously 10 min after diclofenac injection (40 mg/kg). Liver injury was evaluated by aminotransferases (ALT and AST) activities and histopathological analysis. Oxidative stress parameters (SOD, GPX, MPO, GSH, MDA, and PSH) were also determined. Then, eNOS gene transcription and p-eNOS and iNOS protein expressions were evaluated. The transcription factors PPAR-γ and NF-κB in addition to the regulatory protein IκBα were also investigated. Finally, the gene expression levels of inflammatory (COX-2, IL-6, IL-1ß, IL-18, TNF-α, HMGB-1, and TLR-4) and apoptosis (Bcl-2 and Bax) markers were measured. Diclofenac, at the optimal dose of 40 mg/kg, decreased liver injury and maintained histological integrity. It also reduced oxidative stress, inflammation, and apoptosis. Its mechanism of action essentially depended on eNOS activation rather than COX-2 inhibition, since pre-treatment with L-NAME abolished all the protective effects of diclofenac. To our knowledge, this is the first study demonstrating that diclofenac protects rat liver against warm IRI through the induction of NO-dependent pathway. Diclofenac reduced oxidative balance, attenuated the activation of the subsequent pro-inflammatory response and decreased cellular and tissue damage. Therefore, diclofenac could be a promising molecule for the prevention of liver IRI.


Assuntos
Óxido Nítrico , Traumatismo por Reperfusão , Ratos , Animais , Óxido Nítrico/metabolismo , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Ratos Wistar , NG-Nitroarginina Metil Éster/farmacologia , Ciclo-Oxigenase 2/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo
3.
Cells ; 11(17)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36078175

RESUMO

The pathophysiological process of ischemia and reperfusion injury (IRI), an inevitable step in organ transplantation, causes important biochemical and structural changes that can result in serious organ damage. IRI is relevant for early graft dysfunction and graft survival. Today, in a global context of organ shortages, most organs come from extended criteria donors (ECDs), which are more sensitive to IRI. The main objective of organ preservation solutions is to protect against IRI through the application of specific, nonphysiological components, under conditions of no blood or oxygen, and then under conditions of metabolic reduction by hypothermia. The composition of hypothermic solutions includes osmotic and oncotic buffering components, and they are intracellular (rich in potassium) or extracellular (rich in sodium). However, above all, they all contain the same type of components intended to protect against IRI, such as glutathione, adenosine and allopurinol. These components have not changed for more than 30 years, even though our knowledge of IRI, and much of the relevant literature, questions their stability or efficacy. In addition, several pharmacological molecules have been the subjects of preclinical studies to optimize this protection. Among them, trimetazidine, tacrolimus and carvedilol have shown the most benefits. In fact, these drugs are already in clinical use, and it is a question of repositioning them for this novel use, without additional risk. This new strategy of including them would allow us to shift from cold storage solutions to cold preservation solutions including multitarget pharmacological components, offering protection against IRI and thus protecting today's more vulnerable organs.


Assuntos
Soluções para Preservação de Órgãos , Traumatismo por Reperfusão , Humanos , Isquemia , Rim , Preservação de Órgãos , Soluções para Preservação de Órgãos/farmacologia , Traumatismo por Reperfusão/prevenção & controle
4.
Life Sci ; 255: 117833, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450167

RESUMO

AIMS: This study aimed to evaluate the effect of oleuropein (OLE), the main phenolic compound present in olive leaves, on kidney ischemia-reperfusion injury (IRI) and to explore the underlying protective mechanism. MAIN METHODS: Rat kidneys were subjected to 60 min of bilateral warm ischemia followed by 120 min of reperfusion. OLE was administered orally 48 h, 24 h and 30 min prior to ischemia at doses of 10, 50 and 100 mg/kg body weight. The creatinine, urea, uric acid concentrations and lactate dehydrogenase (LDH) activity in plasma were evaluated. Oxidative stress and inflammation parameters were also assessed. Renal expression of AMP-activated protein kinase (p-AMPK), endothelial nitric oxide synthase (eNOS), mitogen-activated protein kinases (MAPK), inflammatory proteins and apoptotic proteins were evaluated using Western blot. KEY FINDINGS: Our results showed that OLE at 50 mg/kg reduced kidney IRI as revealed by a significant decrease of plasmatic creatinine, urea, uric acid concentrations and LDH activity. In parallel, OLE up-regulated antioxidant capacities. Moreover, OLE diminished the level of CRP and the expression of cyclooxygenase 2 (COX-2). Finally, OLE enhanced AMPK phosphorylation as well as eNOS expression whereas MAPK, and cleaved caspase-3 implicated in cellular apoptosis were attenuated in the ischemic kidneys. SIGNIFICANCE: In conclusion, this study shows that OLE could be used as therapeutic agent to reduce IRI through its anti-oxidative, anti-inflammatory and anti-apoptotic properties.


Assuntos
Inflamação/prevenção & controle , Iridoides/farmacologia , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glucosídeos Iridoides , Iridoides/administração & dosagem , Rim/patologia , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/fisiopatologia , Fatores de Tempo
5.
Int J Biol Macromol ; 155: 498-507, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243932

RESUMO

The necessity to increase the efficiency of organ preservation has pushed physicians to consider the use of pharmacological additives in preservation solutions to minimize ischemia reperfusion injury. Here, we evaluated the effect of fucoidan, sulfated polysaccharide from brown seaweed, as an additive to IGL-1 (Institut Georges Lopez) preservation solution. Livers from Wistar rats were preserved for 24 h at 4 °C in IGL-1 solution, enriched or not with fucoidan (100 mg/L). Thereafter, they were subjected to reperfusion (2 h, at 37 °C) using an isolated perfused rat liver model. The addition of fucoidan to IGL-1 solution reduced hepatic injury (AST, ALT) and improved liver function compared to IGL-1 solution without fucoidan. In addition, we noted a significant increase in the phosphorylation of AMPK, AKT protein kinase and GSK3-ß, leading to a reduction in VDAC phosphorylation, as well as a reduction in apoptosis (caspase 3), mitochondrial damage, oxidative stress and endoplasmic reticulum (ER) stress markers. Furthermore, ERK1/2 and P38 MAPKs phosphorylation significantly decreased after supplementation of IGL-1 solution with fucoidan. In conclusion, the supplementation of IGL-1 solution with fucoidan maintained liver graft integrity and function through the prevention of the ER stress, oxidative stress and mitochondrial dysfunction. Fucoidan could be considered as potential natural therapeutic agent to alleviate graft injury.


Assuntos
Isquemia Fria , Transplante de Fígado/efeitos adversos , Preservação de Órgãos/métodos , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Antiulcerosos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Masculino , Soluções para Preservação de Órgãos , Estresse Oxidativo/fisiologia , Fosforilação , Ratos , Ratos Wistar , Traumatismo por Reperfusão/etiologia
6.
Biomed Pharmacother ; 105: 573-581, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29890465

RESUMO

AIM: Zinc has proved its efficacy in many models of ischemia reperfusion (I/R) injury. In this study, we used zinc acexamate (ZAC) as an exogenous source of zinc against renal I/R injury and we investigated whether its protective effects are mediated by the decrease of oxidative stress, inflammation, and mitochondria induced-apoptosis. METHODS: Rats were orally pretreated with vehicle or ZAC (10 or 100 mg/kg) 24 h and 30 min prior to 1 h of bilateral renal warm ischemia and 2 h of reperfusion. RESULTS: Our data showed that 10 mg/kg of ZAC, but not 100 mg/kg, improved renal architecture and function. Also, the low dose of ZAC up-regulated antioxidant enzymes activities and glutathione level and decreased lipids and proteins oxidation. Interestingly, the use of ZAC resulted in a significant reduce of pro-inflammatory cytokines (IL-1ß, IL-6 and MCP-1), enhanced mitochondria integrity and decreased expression of the pro-apoptotic protein caspase-9. CONCLUSION: We conclude that renal I/R induced oxidative stress, inflammation and apoptosis and that the use of ZAC at 10 mg/kg, but not 100 mg/kg, protects rat kidneys from I/R injury by down-regulating these processes.


Assuntos
Aminocaproatos/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Rim/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Aminocaproatos/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Citocinas/imunologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Rim/irrigação sanguínea , Masculino , Ratos Wistar , Isquemia Quente
7.
Can J Physiol Pharmacol ; 96(3): 227-231, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28675791

RESUMO

Liver ischemia-reperfusion (IR) injury is inevitable in surgical procedures such as hepatic resection and liver transplantation. It represents a leading cause of liver graft dysfunction and primary nonfunction after transplantation. Phosphodiesterase (PDE) inhibitors are emerging as effective drugs able to reduce IR damage. The aim of this study was to investigate the effect of selective PDE-3 inhibitor olprinone (Olp) against liver IR injury. Male Wistar rats were subjected to 1 h of partial warm ischemia (70%) followed by 6 h of reperfusion. Before ischemia, rats were treated with saline (IR group), Olp (Olp group), or Olp with Akt inhibitor LY294002 (Olp plus LY group). After reperfusion, hepatic injury (transaminase activities), mitochondrial damage (glutamate dehydrogenase activity), oxidative stress (malondialdehyde and glutathione concentrations and catalase and superoxide dismutase activities), and protein kinase Akt activation were evaluated. Rat treatment with Olp reduced liver injury, prevented mitochondrial damage, decreased lipid peroxidation, and enhanced antioxidant enzymes. Also, Olp induced a significant activation in protein kinase Akt. Inhibition of Akt with LY294002 abolished all of the protective effects of Olp. In conclusion, Olp treatment may be an effective strategy in reducing liver IR injury through oxidative stress prevention and Akt activation.


Assuntos
Citoproteção/efeitos dos fármacos , Imidazóis/farmacologia , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridonas/farmacologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Catalase/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/irrigação sanguínea , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia
8.
World J Gastroenterol ; 23(23): 4211-4221, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28694661

RESUMO

AIM: To compare liver proteolysis and proteasome activation in steatotic liver grafts conserved in University of Wisconsin (UW) and Institut Georges Lopez-1 (IGL-1) solutions. METHODS: Fatty liver grafts from male obese Zücker rats were conserved in UW and IGL-1 solutions for 24 h at 4 °Cand subjected to "ex vivo" normo-thermic perfusion (2 h; 37 °C). Liver proteolysis in tissue specimens and perfusate was measured by reverse-phase high performance liquid chromatography. Total free amino acid release was correlated with the activation of the ubiquitin proteasome system (UPS: measured as chymotryptic-like activity and 20S and 19S proteasome), the prevention of liver injury (transaminases), mitochondrial injury (confocal microscopy) and inflammation markers (TNF 1 alpha, high mobility group box-1 (HGMB-1) and PPAR gamma), and liver apoptosis (TUNEL assay, cytochrome c and caspase 3). RESULTS: Profiles of free AA (alanine, proline, leucine, isoleucine, methionine, lysine, ornithine, and threonine, among others) were similar for tissue and reperfusion effluent. In all cases, the IGL-1 solution showed a significantly higher prevention of proteolysis than UW (P < 0.05) after cold ischemia reperfusion. Livers conserved in IGL-1 presented more effective prevention of ATP-breakdown and more inhibition of UPS activity (measured as chymotryptic-like activity). In addition, the prevention of liver proteolysis and UPS activation correlated with the prevention of liver injury (AST/ALT) and mitochondrial damage (revealed by confocal microscopy findings) as well as with the prevention of inflammatory markers (TNF1alpha and HMGB) after reperfusion. In addition, the liver grafts preserved in IGL-1 showed a significant decrease in liver apoptosis, as shown by TUNEL assay and the reduction of cytochrome c, caspase 3 and P62 levels. CONCLUSION: Our comparison of these two preservation solutions suggests that IGL-1 helps to prevent ATP breakdown more effectively than UW and subsequently achieves a higher UPS inhibition and reduced liver proteolysis.


Assuntos
Fígado Gorduroso/cirurgia , Sobrevivência de Enxerto , Transplante de Fígado/métodos , Soluções para Preservação de Órgãos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Adenosina/química , Alopurinol/química , Animais , Apoptose , Autofagia , Cromatografia Líquida de Alta Pressão , Quimotripsina/química , Glutationa/química , Homozigoto , Inflamação , Insulina/química , Fígado/cirurgia , Masculino , Mitocôndrias/patologia , Preservação de Órgãos/métodos , Perfusão , Proteólise , Rafinose/química , Ratos , Ratos Zucker
9.
Int J Mol Sci ; 18(3)2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28282906

RESUMO

We investigated the involvement of glycogen synthase kinase-3ß (GSK3ß) and the voltage-dependent anion channel (VDAC) in livers subjected to cold ischemia-reperfusion injury (I/R) associated with orthotopic liver transplantation (OLT). Rat livers were preserved in University of Wisconsin (UW) and Institute Georges Lopez (IGL-1) solution, the latter enriched or not with trimetazidine, and then subjected to OLT. Transaminase (ALT) and HMGB1 protein levels, glutamate dehydrogenase (GLDH), and oxidative stress (MDA) were measured. The AKT protein kinase and its direct substrates, GSK3ß and VDAC, as well as caspases 3, 9, and cytochrome C and reticulum endoplasmic stress-related proteins (GRP78, pPERK, ATF4, and CHOP), were determined by Western blot. IGL-1+TMZ significantly reduced liver injury. We also observed a significant phosphorylation of AKT, which in turn induced the phosphorylation and inhibition of GSK3ß. In addition, TMZ protected the mitochondria since, in comparison with IGL-1 alone, we found reductions in VDAC phosphorylation, apoptosis, and GLDH release. All these results were correlated with decreased ER stress. Addition of TMZ to IGL-1 solution increased the tolerance of the liver graft to I/R injury through inhibition of GSK3ß and VDAC, contributing to ER stress reduction and cell death prevention.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Glicogênio Sintase Quinase 3 beta/metabolismo , Transplante de Fígado , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Função Hepática , Transplante de Fígado/efeitos adversos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Trimetazidina/farmacologia , Vasodilatadores/farmacologia
10.
Libyan J Med ; 12(1): 1308780, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28357909

RESUMO

INTRODUCTION: Nitrite has been found to protect liver graft from cold preservation injury. However, the cell signaling pathway involved in this protection remains unclear. Here, we attempt to clarify if the NOS pathway by using the NOS inhibitor, L-NAME (L-NG-Nitroarginine methyl ester). ANIMALS AND METHODS: Rat livers were conserved for 24 h at 4°C in (IGL-1) solution enriched or not with nitrite at 50 nM. In a third group, rats were pretreated with 50 mg/kg of L-NAME before their liver procurement and preservation in IGL-1 supplemented with nitrite (50 nM) and L-NAME (1 mM). After 24 h of cold storage, rat livers were ex-vivo perfused at 37°C during 2 h. Control livers were perfused without cold storage. RESULTS: Nitrite effectively protected the rat liver grafts from the onset of cold I/R injury. L-NAME treatment did not abolish the beneficial effects of nitrite. Liver damage, protein oxidation and lipid peroxidation remained at low levels in both nitrite-treated groups when compared to IGL-1 group. Antioxidant enzyme activities and functional parameters were unchanged after NOS inhibition. CONCLUSION: Despite NOS inhibition by L-NAME, nitrite can still provide hepatic protection during cold I/R preservation. This suggests that nitrite acts through a NOS-independent pathway.


Assuntos
Fígado/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Nitritos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Criopreservação , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos , Transdução de Sinais/efeitos dos fármacos
11.
Ann Transplant ; 21: 602-610, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27670067

RESUMO

BACKGROUND The ability of nitrite to provide protection following ischemia/reperfusion (I/R) has been demonstrated, but its mechanism is still poorly understood. This study aimed to determine the optimal nitrite concentration to add into Institut Georges Lopez (IGL-1) storage solution and to assess its effect on antioxidant enzymes and autophagy. MATERIAL AND METHODS Livers from Sprague-Dawley rats were conserved in IGL-1 for 24 hours at 4°C or in IGL-1 enriched with nitrite at 50, 500 and 1,000 nM, respectively, before being perfused ex-vivo at 37 °C for 120 minutes. Sham livers were perfused ex vivo without cold preservation. RESULTS All biological and functional parameters of the preserved livers were significantly impaired as compared to shams. Interestingly, the supplementation of nitrite to IGL-1 protected the liver from I/R injury. Among the doses of nitrite evaluated, the 50 nM was proved efficient: it significantly reduced cytolysis, mitochondrial damage, and lipid peroxidation, and enhanced antioxidant enzyme activity (superoxide dismutase, catalase, and glutathione peroxidase activity) and hepatic function parameters (portal resistance, bile flow, and bromosulfophthalein clearance). In addition, increased levels of the autophagy parameters were observed when 50 nM of nitrite were added to IGL-1 solution, but this effect disappeared completely with higher concentrations of nitrite. CONCLUSIONS It seems that 50 nM of nitrite added to IGL-1 is the optimal concentration able to maintain cell integrity and hepatic function through autophagy induction and oxidative stress prevention.

12.
Turk J Med Sci ; 46(4): 1258-64, 2016 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-27513433

RESUMO

BACKGROUND/AIM: The aim of this study was to compare the effects of single and repeated trimetazidine (TMZ) administration against warm hepatic ischemia/reperfusion (I/R) injury and to explore the possible mechanisms affected by TMZ. MATERIALS AND METHODS: Wistar rats were divided into 4 groups (n = 6). Sham: rats were subjected to dissection. I/R: rats were subjected to 60 min of partial hepatic ischemia followed by 24 h of reperfusion. TMZ1: Same as I/R group but rats were pretreated with a single dose of TMZ (10 mg/kg, intraperitoneal injection) 30 min before warm ischemia. TMZ3: Same as I/R but rats were treated with 10 mg/kg TMZ for 3 successive days. RESULTS: TMZ treatment decreased liver injury, lipid peroxidation, and apoptosis. The repeated administration of TMZ conferred more protection than the single dose treatment concerning all studied parameters. In parallel, we noted a significant increase in phosphorylated adenosine monophosphate activated protein kinase (p-AMPK) and endothelial nitric oxide synthase (eNOS) levels in TMZ3 as compared to TMZ1. CONCLUSION: Repeated administration of TMZ for 3 days was more efficient than a single dose of TMZ in protecting the liver against I/R induced apoptosis and lipid peroxidation. These effects implicate AMPK and eNOS activation.


Assuntos
Isquemia Quente , Animais , Fígado , Ratos , Ratos Wistar , Traumatismo por Reperfusão , Trimetazidina
13.
Anal Cell Pathol (Amst) ; 2015: 635172, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26229743

RESUMO

Melatonin (Mel) is widely used to attenuate ischemia/reperfusion (I/R) injury in several organs. Nevertheless, the underlying mechanisms remain unclear. This study was conducted to explore the effect of Mel on endoplasmic reticulum (ER) stress, Akt and MAPK cascades after renal warm I/R. Eighteen Wistar rats were randomized into three groups: Sham, I/R, and Mel + I/R. The ischemia period was 60 min followed by 120 min of reperfusion. Mel (10 mg/kg) was administrated 30 min prior to ischemia. The creatinine clearance, MDA, LDH levels, and histopathological changes were evaluated. In addition, Western blot was performed to study ER stress and its downstream apoptosis as well as phosphorylation of Akt, GSK-3ß, VDAC, ERK, and P38. Mel decreased cytolysis and lipid peroxidation and improved renal function and morphology compared to I/R group. Parallely, it significantly reduced the ER stress parameters including GRP 78, p-PERK, XBP 1, ATF 6, CHOP, and JNK. Simultaneously, p-Akt level was significantly enhanced and its target molecules GSK-3ß and VDAC were inhibited. Furthermore, the ERK and P38 phosphorylation were evidently augmented after Mel administration in comparison to I/R group. In conclusion, Mel improves the recovery of renal function by decreasing ER stress and stimulating Akt pathway after renal I/R injury.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Rim/patologia , Melatonina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/patologia , Isquemia Quente , Animais , Western Blotting , Creatinina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta , Rim/efeitos dos fármacos , L-Lactato Desidrogenase/sangue , Masculino , Malondialdeído/sangue , Fosforilação/efeitos dos fármacos , Ratos Wistar , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/enzimologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
World J Gastroenterol ; 21(26): 8021-31, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26185373

RESUMO

AIM: To investigate a possible association between losartan and sirtuin 1 (SIRT1) in reduced-size orthotopic liver transplantation (ROLT) in rats. METHODS: Livers of male Sprague-Dawley rats (200-250 g) were preserved in University of Wisconsin preservation solution for 1 h at 4 °C prior to ROLT. In an additional group, an antagonist of angiotensin II type 1 receptor (AT1R), losartan, was orally administered (5 mg/kg) 24 h and 1 h before the surgical procedure to both the donors and the recipients. Transaminase (as an indicator of liver injury), SIRT1 activity, and nicotinamide adenine dinucleotide (NAD(+), a co-factor necessary for SIRT1 activity) levels were determined by biochemical methods. Protein expression of SIRT1, acetylated FoxO1 (ac-FoxO1), NAMPT (the precursor of NAD+), heat shock proteins (HSP70, HO-1) expression, endoplasmic reticulum stress (GRP78, IRE1α, p-eIF2) and apoptosis (caspase 12 and caspase 3) parameters were determined by Western blot. Possible alterations in protein expression of mitogen activated protein kinases (MAPK), such as p-p38 and p-ERK, were also evaluated. Furthermore, the SIRT3 protein expression and mRNA levels were examined. RESULTS: The present study demonstrated that losartan administration led to diminished liver injury when compared to ROLT group, as evidenced by the significant decreases in alanine aminotransferase (358.3 ± 133.44 vs 206 ± 33.61, P < 0.05) and aspartate aminotransferase levels (893.57 ± 397.69 vs 500.85 ± 118.07, P < 0.05). The lessened hepatic injury in case of losartan was associated with enhanced SIRT1 protein expression and activity (5.27 ± 0.32 vs 6.08 ± 0.30, P < 0.05). This was concomitant with increased levels of NAD(+) (0.87 ± 0.22 vs 1.195 ± 0.144, P < 0.05) the co-factor necessary for SIRT1 activity, as well as with decreases in ac-FoxO1 expression. Losartan treatment also provoked significant attenuation of endoplasmic reticulum stress parameters (GRP78, IRE1α, p-eIF2) which was consistent with reduced levels of both caspase 12 and caspase 3. Furthermore, losartan administration stimulated HSP70 protein expression and attenuated HO-1 expression. However, no changes were observed in protein or mRNA expression of SIRT3. Finally, the protein expression pattern of p-ERK and p-p38 were not altered upon losartan administration. CONCLUSION: The present study reports that losartan induces SIRT1 expression and activity, and that it reduces hepatic injury in a ROLT model.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Transplante de Fígado , Fígado/efeitos dos fármacos , Fígado/cirurgia , Losartan/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Sirtuína 1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Citoproteção , Modelos Animais de Doenças , Ativação Enzimática , Regulação da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Fígado/enzimologia , Fígado/patologia , Transplante de Fígado/efeitos adversos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NAD/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos
15.
World J Gastroenterol ; 21(6): 1765-74, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25684941

RESUMO

AIM: To investigate the possible involvement of Sirtuin 1 (SIRT1) in rat orthotopic liver transplantation (OLT), when Institute Georges Lopez 1 (IGL-1) preservation solution is enriched with trimetazidine (TMZ). METHODS: Male Sprague-Dawley rats were used as donors and recipients. Livers were stored in IGL-1 preservation solution for 8h at 4 °C, and then underwent OLT according to Kamada's cuff technique without arterialization. In another group, livers were stored in IGL-1 preservation solution supplemented with TMZ, at 10(-6) mol/L, for 8 h at 4 °C and then underwent OLT. Rats were sacrificed 24 h after reperfusion, and liver and plasma samples were collected. Liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity) oxidative stress (malondialdehyde levels), and nicotinamide adenine dinucleotide (NAD(+)), the co-factor necessary for SIRT1 activity, were determined by biochemical methods. SIRT1 and its substrates (ac-FoxO1, ac-p53), the precursor of NAD(+), nicotinamide phosphoribosyltransferase (NAMPT), as well as the phosphorylation of adenosine monophosphate activated protein kinase (AMPK), p-mTOR, p-p70S6K (direct substrate of mTOR), autophagy parameters (beclin-1, LC3B) and MAP kinases (p-p38 and p-ERK) were determined by Western blot. RESULTS: Liver grafts preserved in IGL-1 solution enriched with TMZ presented reduced liver injury and mitochondrial damage compared with those preserved in IGL-1 solution alone. In addition, livers preserved in IGL-1 + TMZ presented reduced levels of oxidative stress. This was consistent with enhanced SIRT1 protein expression and elevated SIRT1 activity, as indicated by decreased acetylation of p53 and FoxO1. The elevated SIRT1 activity in presence of TMZ can be attributed to the enhanced NAMPT protein and NAD(+)/NADH levels. Up-regulation of SIRT1 was consistent with activation of AMPK and inhibition of phosphorylation of mTOR and its direct substrate (p-p70S6K). As a consequence, autophagy mediators (beclin-1 and LC3B) were over-expressed. Furthermore, MAP kinases were regulated in livers preserved with IGL-1 + TMZ, as they were characterized by enhanced p-ERK and decreased p-p38 protein expression. CONCLUSION: Our study shows that IGL-1 preservation solution enriched with TMZ protects liver grafts from the IRI associated with OLT, through SIRT1 up-regulation.


Assuntos
Transplante de Fígado/métodos , Fígado/efeitos dos fármacos , Fígado/cirurgia , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/prevenção & controle , Sirtuína 1/metabolismo , Animais , Autofagia/efeitos dos fármacos , Biomarcadores/sangue , Isquemia Fria , Sobrevivência de Enxerto/efeitos dos fármacos , Fígado/enzimologia , Transplante de Fígado/efeitos adversos , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Preservação de Órgãos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/etiologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Trimetazidina/farmacologia , Regulação para Cima
16.
World J Gastroenterol ; 20(43): 16203-14, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25473175

RESUMO

AIM: To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts. METHODS: Sprague-Dawley rat livers were stored in University of Wisconsin preservation solution and then washed with different rinse solutions (Ringer's lactate solution and a new rinse solution enriched with PEG-35 at either 1 or 5 g/L) before ex vivo perfusion with Krebs-Heinseleit buffer solution. We assessed the following: liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity), liver function (bile output and vascular resistance), oxidative stress (malondialdehyde), nitric oxide, liver autophagy (Beclin-1 and LCB3) and cytoskeleton integrity (filament and globular actin fraction); as well as levels of metalloproteinases (MMP2 and MMP9), adenosine monophosphate-activated protein kinase (AMPK), heat shock protein 70 (HSP70) and heme oxygenase 1 (HO-1). RESULTS: When we used the PEG-35 rinse solution, reduced hepatic injury and improved liver function were noted after reperfusion. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI. CONCLUSION: Using the rinse solution containing PEG-35 was effective for decreasing liver graft vulnerability to IRI.


Assuntos
Isquemia Fria , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Polietilenoglicóis/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Adenosina/farmacologia , Alopurinol/farmacologia , Animais , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Citoproteção , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Modelos Animais de Doenças , Glutationa/farmacologia , Hepatectomia , Insulina/farmacologia , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo/efeitos dos fármacos , Rafinose/farmacologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
17.
Ren Fail ; 36(9): 1436-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25246344

RESUMO

Renal ischemia reperfusion (I/R) injury, which occurs during renal surgery or transplantation, is the major cause of acute renal failure. Trimetazidine (TMZ), an anti-ischemic drug, protects kidney against the deleterious effects of I/R. However its protective mechanism remains unclear. The aim of this study is to examine the relevance of Akt, endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor-1α (HIF-1α) on TMZ induced protection of kidneys against I/R injury. Wistar rats were subjected to 60 min of warm renal ischemia followed by 120 min of reperfusion, or to intraperitoneal injection of TMZ (3 mg/kg) 30 min before ischemia. In sham operated group renal pedicles were only dissected. Compared to I/R, TMZ treatment decreased lactate dehydrogenase (845 ± 13 vs. 1028 ± 30 U/L). In addition, creatinine clearance and sodium reabsorption rates reached 105 ± 12 versus 31 ± 11 µL/min/g kidney weight and 95 ± 1 versus 68 ± 5%, respectively. Besides, we noted a decrease in malondialdehyde concentration (0.33 ± 0.01 vs. 0.59 ± 0.03 nmol/mg of protein) and an increase in glutathione concentration (2.6 ± 0.2 vs. 0.93 ± 0.16 µg GSH/mg of protein), glutathione peroxidase (95 ± 4 vs. 61 ± 3 µg GSH/min/mg of protein), and superoxide dismutase (25 ± 3 vs. 11 ± 2 U/mg of protein) and catalase (91 ± 12 vs. 38 ± 9 µmol/min/mg of protein) activities. Parallely, we noted a significant increase in p-Akt, eNOS, nitrite and nitrate (18 ± 2 vs. 8 ± 0.1 pomL/mg of protein), HIF-1α (333 ± 48 vs. 177 ± 14 µg/mg of protein) and heme oxygenase-1 (HO-1) levels regarding I/R. TMZ treatment improves renal tolerance to warm I/R. Such protection implicates an activation of Akt/eNOS signaling pathway, HIF-1α stabilization and HO-1 activation.


Assuntos
Nefropatias/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Trimetazidina/farmacologia , Vasodilatadores/farmacologia , Animais , Western Blotting , Heme Oxigenase-1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Nefropatias/metabolismo , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
18.
Transpl Int ; 27(5): 493-503, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24472096

RESUMO

Ischemia-reperfusion (IR) injury is an important problem in liver surgery especially when steatosis is present. Ischemic preconditioning (PC) is the only surgical strategy that has been applied in patients with steatotic livers undergoing warm ischemia. Silent information regulator 1 (SIRT1) is a histone deacetylase that regulates various cellular processes. This study evaluates the SIRT1 implication in PC in fatty livers. Homozygous (Ob) Zucker rats were subjected to IR and IR + PC. An additional group treated with sirtinol or EX527 (SIRT1 inhibitors) before PC was also realized. Liver injury and oxidative stress were evaluated. SIRT1 protein levels and activity, as well as other parameters involved in PC protective mechanisms (adenosine monophosphate protein kinase, eNOS, HSP70, MAP kinases, apoptosis), were also measured. We demonstrated that the protective effect of PC was due in part to SIRT1 induction, as SIRT1 inhibition resulted in increased liver injury and abolished the beneficial mechanisms of PC. In this study, we report for the first time that SIRT1 is involved in the protective mechanisms induced by hepatic PC in steatotic livers.


Assuntos
Fígado Gorduroso/complicações , Precondicionamento Isquêmico , Fígado/irrigação sanguínea , Traumatismo por Reperfusão/prevenção & controle , Sirtuína 1/fisiologia , Animais , Apoptose , Proteínas de Choque Térmico HSP70/fisiologia , Fígado/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo III/fisiologia , Estresse Oxidativo , Ratos , Ratos Zucker , Sirtuína 1/análise
19.
J Pharm Pharmacol ; 66(1): 62-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24127984

RESUMO

OBJECTIVES: The aim of this study is to investigate the protective mechanisms induced by bortezomib added to Institut George Lopez (IGL)-1 preservation solution to protect steatotic livers against cold ischaemia reperfusion injury and to examine whether these mechanisms occur through the activation of adenosine monophosphate activated protein kinase (AMPK), Akt/mTOR pathways. METHODS: Steatotic livers from obese rats were preserved for 24 h (at 4 °C) in IGL-1 solution with or without bortezomib (100 nM) or pretreated with AMPK inhibitor adenine 9-α-D-arabinofuranoside and preserved in IGL-1 + bortezomib. Livers were then perfused for 2 h at 37 °C. Liver injury (alanine aminotransferase/aspartate aminotransferase) and function (bile production and vascular resistance) were measured. Also, Akt/mTOR, phosphorylated AMPK (pAMPK) and apoptosis were determined by Western blot analyses. KEY FINDINGS: Bortezomib addition to IGL-1 solution significantly reduced steatotic liver injury, improved graft function and decreased liver apoptosis. These benefits were diminished by the pretreatment of obese rats with AMPK inhibitor Ara. Western blot analyses showed a significant increase in pAMPK after ischaemia and reperfusion. We also observed a significant phosphorylation of Akt in IGL-1 +bortezomib group that, in turn, induced the phosphorylation of mTOR and glycogen synthase kinase 3ß. CONCLUSIONS: Bortezomib, at low and non toxic concentration, is a promising additive to IGL-1 solution for steatotic liver preservation. Its protective effect is due to the activation of AMPK and Akt/mTOR pathways.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Borônicos/farmacologia , Fígado Gorduroso/metabolismo , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Bortezomib , Fígado/metabolismo , Ratos , Ratos Zucker , Traumatismo por Reperfusão/metabolismo , Soluções/farmacologia
20.
J Pineal Res ; 55(1): 65-78, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23551302

RESUMO

Ischemia/reperfusion injury (IRI) associated with liver transplantation plays an important role in the induction of graft injury. Prolonged cold storage remains a risk factor for liver graft outcome, especially when steatosis is present. Steatotic livers exhibit exacerbated endoplasmic reticulum (ER) stress that occurs in response to cold IRI. In addition, a defective liver autophagy correlates well with liver damage. Here, we evaluated the combined effect of melatonin and trimetazidine as additives to IGL-1 solution in the modulation of ER stress and autophagy in steatotic liver grafts through activation of AMPK. Steatotic livers were preserved for 24 hr (4°C) in UW or IGL-1 solutions with or without MEL + TMZ and subjected to 2-hr reperfusion (37°C). We assessed hepatic injury (ALT and AST) and function (bile production). We evaluated ER stress (GRP78, PERK, and CHOP) and autophagy (beclin-1, ATG7, LC3B, and P62). Steatotic livers preserved in IGL-1 + MEL + TMZ showed lower injury and better function as compared to those preserved in IGL-1 alone. IGL-1 + MEL + TMZ induced a significant decrease in GRP78, pPERK, and CHOP activation after reperfusion. This was consistent with a major activation of autophagic parameters (beclin-1, ATG7, and LC3B) and AMPK phosphorylation. The inhibition of AMPK induced an increase in ER stress and a significant reduction in autophagy. These data confirm the close relationship between AMPK activation and ER stress and autophagy after cold IRI. The addition of melatonin and TMZ to IGL-1 solution improved steatotic liver graft preservation through AMPK activation, which reduces ER stress and increases autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Fígado Gorduroso/metabolismo , Melatonina/farmacologia , Trimetazidina/farmacologia , Animais , Autofagia/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fígado Gorduroso/patologia , Histocitoquímica , Transplante de Fígado , Substâncias Protetoras/farmacologia , Ratos , Ratos Zucker , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA