Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Biochem Pharmacol ; 201: 115079, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35551916

RESUMO

Histatin-1 is a salivary peptide with antimicrobial and wound healing promoting activities, which was previously shown to stimulate angiogenesis in vitro and in vivo via inducing endothelial cell migration. The mechanisms underlying the proangiogenic effects of Histatin-1 remain poorly understood and specifically, the endothelial receptor for this peptide, is unknown. Based on the similarities between Histatin-1-dependent responses and those induced by the prototypical angiogenic receptor, vascular endothelial growth factor receptor 2 (VEGFR2), we hypothesized that VEGFR2 is the Histatin-1 receptor in endothelial cells. First, we observed that VEGFR2 is necessary for Histatin-1-induced endothelial cell migration, as shown by both pharmacological inhibition studies and siRNA-mediated ablation of VEGFR2. Moreover, Histatin-1 co-immunoprecipitated and co-localized with VEGFR2, associating spatial proximity between these proteins with receptor activation. Indeed, pulldown assays with pure, tagged and non-tagged proteins showed that Histatin-1 and VEGFR2 directly interact in vitro. Optical tweezers experiments permitted estimating kinetic parameters and rupture forces, indicating that the Histatin-1-VEGFR2 interaction is transient, but specific and direct. Sequence alignment and molecular modeling identified residues Phe26, Tyr30 and Tyr34 within the C-terminal domain of Histatin-1 as relevant for VEGFR2 binding and activation. This was corroborated by mutation and molecular dynamics analyses, as well as in direct binding assays. Importantly, these residues were required for Histatin-1 to induce endothelial cell migration and angiogenesis in vitro. Taken together, our findings reveal that VEGFR2 is the endothelial cell receptor of Histatin-1 and provide insights to the mechanism by which this peptide promotes endothelial cell migration and angiogenesis.


Assuntos
Células Endoteliais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Proteínas de Transporte/metabolismo , Movimento Celular , Células Endoteliais/metabolismo , Histatinas/metabolismo , Histatinas/farmacologia , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
J Chem Inf Model ; 61(10): 5001-5012, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34617740

RESUMO

The binding of C-4-halogenated 1-(4-X-2,5-dimethoxyphenyl)-2-aminopropane (DOX) serotonin agonist psychedelics at all three 5-HT2 receptor subtypes is up to two orders of magnitude stronger for X = Cl, Br, or I (but not F) than when C-4 bears a hydrogen atom and more than expected from their hydrophobicities. Our docking and molecular dynamics simulations agree with the fact that increasing the polarizability of halogens results in halogen-oxygen distances to specific backbone C═O groups, and C-X···O angles, in ranges expected for halogen bonds (XBs), which could contribute to the high affinities observed. Good linear correlations are found for each receptor type, indicating that the binding pocket-ligand affinity is enhanced as the XB interaction becomes stronger (i.e., I ≈ Br > Cl > F). It is also striking to note how the linear equations unveil that the receptor's response on the strength of the XB interaction is quite similar among 5-HT2A and 5-HT2C, whereas the 5-HT2B's sensitivity is less. The calculated dipole polarizabilities in the binding pocket of the receptors reflect the experimental affinity values, indicating that less-polarizable and harder binding sites are more prone to XB formation.


Assuntos
Halogênios , Serotonina , Sítios de Ligação , Ligantes , Simulação de Dinâmica Molecular
4.
Front Immunol ; 12: 645528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868281

RESUMO

Gastric cancer (GC) is the fifth most prevalent type of cancer worldwide. Gastric tumor cells express MICA protein, a ligand to NKG2D receptor that triggers natural killer (NK) cells effector functions for early tumor elimination. MICA gene is highly polymorphic, thus originating alleles that encode protein variants with a controversial role in cancer. The main goal of this work was to study MICA gene polymorphisms and their relationship with the susceptibility and prognosis of GC. Fifty patients with GC and 50 healthy volunteers were included in this study. MICA alleles were identified using Sanger sequencing methods. The analysis of MICA gene sequence revealed 13 MICA sequences and 5 MICA-short tandem repeats (STR) alleles in the studied cohorts We identified MICA*002 (*A9) as the most frequent allele in both, patients and controls, followed by MICA*008 allele (*A5.1). MICA*009/049 allele was significantly associated with increased risk of GC (OR: 5.11 [95% CI: 1.39-18.74], p = 0.014). The analysis of MICA-STR alleles revealed a higher frequency of MICA*A5 in healthy individuals than GC patients (OR = 0.34 [95% CI: 0.12-0.98], p = 0.046). Survival analysis after gastrectomy showed that patients with MICA*002/002 or MICA*002/004 alleles had significantly higher survival rates than those patients bearing MICA*002/008 (p = 0.014) or MICA*002/009 (MICA*002/049) alleles (p = 0.040). The presence of threonine in the position MICA-181 (MICA*009/049 allele) was more frequent in GC patients than controls (p = 0.023). Molecular analysis of MICA-181 showed that the presence of threonine provides greater mobility to the protein than arginine in the same position (MICA*004), which could explain, at least in part, some immune evasion mechanisms developed by the tumor. In conclusion, our findings suggest that the study of MICA alleles is crucial to search for new therapeutic approaches and may be useful for the evaluation of risk and prognosis of GC and personalized therapy.


Assuntos
Alelos , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe I/genética , Repetições de Microssatélites , Proteínas de Neoplasias/genética , Polimorfismo Genético , Neoplasias Gástricas/genética , Idoso , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/imunologia , Neoplasias Gástricas/imunologia
5.
ACS Omega ; 5(12): 6928-6936, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32258929

RESUMO

The interaction mechanism between a scarcely soluble copper(II) complex of Cu(II)-6-hydroxychromone-3-carbaldehyde-(3'-hydroxy)benzoylhydrazone (CuCHz) in aqueous solution and its DMßCD complex was studied in the presence of ctDNA through spectroscopy and thermodynamic methods. The thermodynamic results indicate that the binding process of the CuCHz-DMßCD inclusion complex is a spontaneous process and the inclusion is enthalpy-driven. The binding constants of CuCHz and CuCHz-DMßCD with ctDNA are 2.69 × 103 and 14.7 × 103 L mol-1, respectively. The stoichiometry of the complex is 1:1, and the determined thermodynamic indicates that the process of binding is spontaneous and entropy-driven. A competitive binding titration with ethidium bromide revealed that CuCHz efficiently displaces EB from the EB-DNA system. In addition to the thermal denaturation experiments and docking studies, we can confirm that the mode of binding of this complex to ctDNA is intercalation mode. The presence of DMßCD enhances the aqueous solubility of CuCHz; nevertheless, the cyclodextrin did not affect the interaction of CuCHz with ctDNA because the inclusion complex breaks down when it binds with ctDNA.

6.
ACS Omega ; 5(5): 2260-2266, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32064387

RESUMO

The human 5-HT2 receptor subtypes have high sequence identity in their orthosteric ligand-binding domain, and many agonists are poorly selective between the 5-HT2A and 5-HT2C subtypes. Nevertheless, their activation is associated with different pharmacological outcomes. We synthesized five phenethylamine analogs in which the benzene ring is replaced by a bulky dibenzo[b,d]furan moiety and found a couple with >70-fold 5-HT2C selectivity. Molecular docking studies of the most potent compound (5) at both receptor subtypes revealed the likely structural basis of its selectivity. Although in both cases, some crucial interactions are conserved, the change of the Ala2225.46 residue in the 5-HT2C receptor to the larger Ser2425.46 in the 5-HT2A subtype, which is the only structural difference between the orthosteric binding pockets of both receptors, weakens a π-π stacking interaction between the dibenzofuran moiety and the important Phe6.52 residue and breaks a hydrogen bond between the dibenzofuran oxygen and Ser5.43, explaining the selectivity of compound 5 for the 5-HT2C receptor. We believe that this effect of the residue at position 5.46 merits further exploration in the search for selective 5-HT2C receptor agonists that are of considerable interest in the treatment of schizophrenia and substance abuse.

7.
Chem Biol Drug Des ; 94(2): 1467-1477, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30920734

RESUMO

(R/S)-Salsolinol is a full agonist of the µ-opioid receptor (µOR) Gi protein pathway via its (S)-enantiomer and is functionally selective as it does not promote ß-arrestin recruitment. Compared to (S)-salsolinol, the (R)-enantiomer is a less potent agonist of the Gi protein pathway. We have now studied the interactions of the salsolinol enantiomers docked in the binding pocket of the µOR to determine the molecular interactions that promote enantiomeric specificity and functional selectivity of (R/S)-salsolinol. Molecular dynamics simulations showed that (S)-salsolinol interacted with 8 of the 11 residues of the µOR binding site, enough to stabilize the molecule. (R)-Salsolinol showed higher mobility with fewer prevalent bonds. Hence, the methyl group bound to the (S)-stereogenic center promoted more favorable interactions in the µOR binding site than in the (R)-orientation. Because (S)-salsolinol is a small molecule (179.2 Da), it did not interact with residues implicated in the binding of larger morphinan agonists that are located toward the extracellular portion of the binding pocket: W3187.35 , I3227.39 , and Y3267.43 . Our results suggest that contact with residues which (S)-salsolinol interacts with are enough to elicit Gi protein activation, and possibly define a minimum set required by µOR ligands to promote activation of the Gi protein pathway.


Assuntos
Isoquinolinas/química , Simulação de Dinâmica Molecular , Receptores Opioides mu/agonistas , Sítios de Ligação , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Photochem Photobiol ; 94(6): 1092-1099, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29964295

RESUMO

Naphthoxazole derivatives are small heterocyclic compounds endowed with outstanding fluorescence properties. In this work, we report a detailed study of the intense white light fluorescence observed in naphthoxazole-quinoline dyads in solvent mixtures including at least a strong hydrogen bonding solvent. The same phenomenon was also studied in inclusion complexes naphthoxazole derivatives-sulfonated-ßCD either in aqueous solution as well as in solid phase. A novel mechanism of white molecular fluorescence generation based on solvent-to-fluorophore proton transfer facilitated by ground state hydrogen bonding was characterized. The emission combines both, a blue charge transfer fluorescence emitted by the locally excited singlet state along with a red-shifted emission from a proton transfer complex.

9.
Arch Pharm (Weinheim) ; 350(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27981607

RESUMO

A series of novel 3-indolylpropyl derivatives was synthesized and evaluated for their binding affinities at the serotonin-1A receptor subtype (5-HT1A R) and the 5-HT transporter (SERT). Compounds 11b and 14b exhibited the highest affinities at the 5-HT1A R (Ki = 43 and 56 nM), whereas compounds 11c and 14a were the most potent analogs at the SERT (Ki = 34 and 17 nM). On the other hand, compounds 14b and 11d showed potent activity at both targets, displaying a profile that makes them promising leads for the search for novel potent ligands with a dual mechanism of action. Molecular docking studies in all the compounds unveiled relevant drug-target interactions, which allowed rationalizing the observed affinities.


Assuntos
Indóis/síntese química , Indóis/farmacologia , Simulação de Acoplamento Molecular , Receptor 5-HT1A de Serotonina/metabolismo , Serotoninérgicos/síntese química , Serotoninérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Antidepressivos/síntese química , Antidepressivos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Indóis/química , Estrutura Molecular , Serotoninérgicos/química , Relação Estrutura-Atividade
10.
PLoS One ; 11(5): e0154989, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27152414

RESUMO

Despite their structural and chemical commonalities, p-chloro-ß-methylphenethylamine and p-methoxy-ß-methylphenethylamine display distinct inhibitory and substrate activities upon MAO-B binding. Density Functional Theory (DFT) quantum chemical calculations reveal that ß-methylation and para-substitution underpin the observed activities sustained by calculated transition state energy barriers, attained conformations and key differences in their interactions in the enzyme's substrate binding site. Although both compounds meet substrate requirements, it is clear that ß-methylation along with the physicochemical features of the para-substituents on the aromatic ring determine the activity of these compounds upon binding to the MAO B-isoform. While data for a larger set of compounds might lend generality to our conclusions, our experimental and theoretical results strongly suggest that the contrasting activities displayed depend on the conformations adopted by these compounds when they bind to the enzyme.


Assuntos
Anfetaminas/metabolismo , Monoaminoxidase/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Modelos Moleculares , Espectroscopia de Prótons por Ressonância Magnética , Especificidade por Substrato , Termodinâmica
11.
Front Behav Neurosci ; 10: 253, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28167903

RESUMO

Background: Several studies have shown that the ethanol-derived metabolite salsolinol (SAL) can activate the mesolimbic system, suggesting that SAL is the active molecule mediating the rewarding effects of ethanol. In vitro and in vivo studies suggest that SAL exerts its action on neuron excitability through a mechanism involving opioid neurotransmission. However, there is no direct pharmacologic evidence showing that SAL activates opioid receptors. Methods: The ability of racemic (R/S)-SAL, and its stereoisomers (R)-SAL and (S)-SAL, to activate the µ-opioid receptor was tested in cell-based (light-emitting) receptor assays. To further characterizing the interaction of SAL stereoisomers with the µ-opioid receptor, a molecular docking study was performed using the crystal structure of the µ-opioid receptor. Results: This study shows that SAL activates the µ-opioid receptor by the classical G protein-adenylate cyclase pathway with an half-maximal effective concentration (EC50) of 2 × 10-5 M. The agonist action of SAL was fully blocked by the µ-opioid antagonist naltrexone. The EC50 for the purified stereoisomers (R)-SAL and (S)-SAL were 6 × 10-4 M and 9 × 10-6 M respectively. It was found that the action of racemic SAL on the µ-opioid receptor did not promote the recruitment of ß-arrestin. Molecular docking studies showed that the interaction of (R)- and (S)-SAL with the µ-opioid receptor is similar to that predicted for the agonist morphine. Conclusions: It is shown that (R)-SAL and (S)-SAL are agonists of the µ-opioid receptor. (S)-SAL is a more potent agonist than the (R)-SAL stereoisomer. In silico analysis predicts a morphine-like interaction between (R)- and (S)-SAL with the µ-opioid receptor. These results suggest that an opioid action of SAL or its enantiomers is involved in the rewarding effects of ethanol.

12.
J Chem Inf Model ; 55(7): 1349-60, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26091526

RESUMO

Two of the possible catalytic mechanisms for neurotransmitter oxidative deamination by monoamine oxidase B (MAO B), namely, polar nucleophilic and hydride transfer, were addressed in order to comprehend the nature of their rate-determining step. The Quantum Chemical Cluster Approach was used to obtain transition states of MAO B complexed with phenylethylamine (PEA), benzylamine (BA), and p-nitrobenzylamine (NBA). The choice of these amines relies on their importance to address MAO B catalytic mechanisms so as to help us to answer questions such as why BA is a better substrate than NBA or how para-substitution affects substrate's reactivity. Transition states were later validated by comparison with the experimental free energy barriers. From a theoretical point of view, and according to the our reported transition states, their calculated barriers and structural and orbital differences obtained by us among these compounds, we propose that good substrates such as BA and PEA might follow the hydride transfer pathway while poor substrates such as NBA prefer the polar nucleophilic mechanism, which might suggest that MAO B can act by both mechanisms. The low free energy barriers for BA and PEA reflect the preference that MAO B has for hydride transfer over the polar nucleophilic mechanism when catalyzing the oxidative deamination of neurotransmitters.


Assuntos
Biocatálise , Monoaminoxidase/metabolismo , Teoria Quântica , Motivos de Aminoácidos , Benzilaminas/metabolismo , Humanos , Cinética , Modelos Moleculares , Monoaminoxidase/química , Fenetilaminas/metabolismo , Termodinâmica , Água/química
13.
Carbohydr Polym ; 121: 295-301, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25659701

RESUMO

The chemosensor 3-phenyl-7-(pyrid-2-yl)-[1,2,3]triazolo[1,5-a]pyridine (PhPTP) used in combination with two different cyclodextrins, enable its solubilization and stabilization in aqueous solution. The behavior of the inclusion complex, and its binding ability in both cyclodextrins were investigated by means of absorption and fluorescence spectroscopy. The best results were obtained for PhPTP-DMßCD assembly, and its orientation in the DMßCD nano cavity was obtained by 2D-NMR. This inclusion geometry was confirmed by docking studies. The binary complex was proved as chemosensor upon the presence of different divalent cations in aqueous solutions. The PhPTP-DMßCD system, displays a high sensitivity for Fe(2+) by fluorescence quenching in neutral aqueous solution even in the presence of other metals showing high selectivity towards Fe(2+).


Assuntos
Cátions Bivalentes/química , Nanoestruturas/química , Piridinas/química , Triazóis/química , beta-Ciclodextrinas/química , Fluorescência , Ferro/química , Piridinas/síntese química , Triazóis/síntese química , Água/química
14.
J Comput Aided Mol Des ; 29(1): 37-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25338130

RESUMO

A MD simulation protocol was developed to model halogen bonding in protein-ligand complexes by inclusion of a charged extra point to represent the anisotropic distribution of charge on the halogen atom. This protocol was then used to simulate the interactions of cathepsin L with a series of halogenated and non-halogenated inhibitors. Our results show that chloro, bromo and iodo derivatives have progressively narrower distributions of calculated geometries, which reflects the order of affinity I > Br > Cl, in agreement with the IC50 values. Graphs for the Cl, Br and I analogs show stable interactions between the halogen atom and the Gly61 carbonyl oxygen of the enzyme. The halogen-oxygen distance is close to or less than the sum of the van der Waals radii; the C-X···O angle is about 170°; and the X···O=C angle approaches 120°, as expected for halogen bond formation. In the case of the iodo-substituted analogs, these effects are enhanced by introduction of a fluorine atom on the inhibitors' halogen-bonding phenyl ring, indicating that the electron withdrawing group enlarges the σ-hole, resulting in improved halogen bonding properties.


Assuntos
Catepsina L/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Halogênios/química , Simulação de Dinâmica Molecular , Catepsina L/química , Catepsina L/metabolismo , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/metabolismo , Concentração Inibidora 50 , Ligantes , Modelos Moleculares , Oxigênio/química , Relação Estrutura-Atividade
15.
Toxicol Appl Pharmacol ; 279(1): 53-62, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24844443

RESUMO

RATIONALE: Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca(2+) channels and their renowned antioxidant properties. METHODS: We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca(2+) channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca(2+) channel-blocking activity and antioxidant properties. The Ca(2+) channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flow cytometry using the ROS sensitive dye 1,2,3 DHR. RESULTS: Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca(2+) channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca(2+) channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. CONCLUSIONS: Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Di-Hidropiridinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Sítios de Ligação , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/química , Cardiotônicos/farmacologia , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Di-Hidropiridinas/química , Frequência Cardíaca/efeitos dos fármacos , Hidroxilação , Masculino , Modelos Moleculares , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
16.
Carbohydr Polym ; 107: 124-31, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24702927

RESUMO

A new supramolecular sensitizer for nickel(II) ion in aqueous solution based on a pyridyltriazolopyridine-cyclodextrin inclusion complex is proposed. The inclusion complexation behavior, characterization and binding ability of pyridyltriazolopyridine (PTP) with dimethyl-ß-cyclodextrin (DMßCD) has been investigated both in solution and solid state by means of absorption, fluorescence, (1)H NMR, DSC, and molecular modeling methods. The stoichiometry of the inclusion complex is 1:1, and the thermodynamic studies indicate that the inclusion of PTP is mainly an entropic driven process. The 2D NMR studies revealed that the pyridyl-triazolopyridine is included by both sides of cyclodextrin which are in good agreement with the docking results. The fluorescence changes upon addition of divalent cations to the inclusion complex indicate a high selectivity and sensitivity for Ni(2+) by fluorescence quenching in neutral aqueous solution.


Assuntos
Níquel/análise , Piridinas/química , Triazóis/química , Poluentes Químicos da Água/análise , Água/química , beta-Ciclodextrinas/química , Monitoramento Ambiental , Modelos Moleculares , Conformação Molecular , Níquel/química , Soluções , Poluentes Químicos da Água/química
17.
Bioorg Med Chem ; 21(24): 7604-11, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24262884

RESUMO

A series of 3-(3-(4-(3-(1H-indol-3-yl)propyl)piperazin-1-yl)propyl)-1H-indole derivatives (3a-d and 5a-f) as homo- and hetero-bis-ligands, were synthesized and evaluated for in vitro affinity at the serotonin transporter (SERT) and the 5-HT1A receptor. Compounds 5b and 5f showed nanomolar affinities for both targets. The experimental data were rationalized according to results obtained from docking experiments. These findings are in agreement with our proposal that bis-indole derivatives can bind both targets, and might serve as leads in the quest of ligands endowed with a dual mechanism of action.


Assuntos
Indóis/farmacologia , Piperazinas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade
18.
Chem Pharm Bull (Tokyo) ; 60(5): 632-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22689401

RESUMO

A series of 3-[3-(4-aryl-1-piperazinyl)-propyl]-1H-indole derivatives (12a-h) was synthesized and evaluated for binding affinity at the human 5-hydroxytryptamine(1A) receptor (5-HT(1A)R) compounds (12b) and (12h) showed the highest 5-HT(1A) receptor affinity (IC(50)=15 nM). Molecular docking studies with all the compounds in a homology model of 5-HT(1A) showed that the main interaction anchoring the ligand in the receptor was a charge-reinforced bond between the protonated nitrogen atom (N-4) of the piperazine ring and Aspartate(3.32).


Assuntos
Indóis/química , Piperazinas/química , Receptor 5-HT1A de Serotonina/química , Ácido Aspártico/química , Sítios de Ligação , Simulação por Computador , Humanos , Indóis/síntese química , Piperazina , Estrutura Terciária de Proteína , Receptor 5-HT1A de Serotonina/metabolismo , Relação Estrutura-Atividade
19.
J Chem Inf Model ; 52(5): 1213-21, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22540832

RESUMO

Although substrate conversion mediated by human monoaminooxidase (hMAO) has been associated with the deprotonated state of their amine moiety, data regarding the influence of protonation on substrate binding at the active site are scarce. Thus, in order to assess protonation influence, steered molecular dynamics (SMD) runs were carried out. These simulations revealed that the protonated form of the substrate serotonin (5-HT) exhibited stronger interactions at the protein surface compared to the neutral form. The latter displayed stronger interactions in the active site cavity. These observations support the possible role of the deprotonated form in substrate conversion. Multigrid docking studies carried out to rationalize the role of 5-HT protonation in other sites besides the active site indicated two energetically favored docking sites for the protonated form of 5-HT on the enzyme surface. These sites seem to be interconnected with the substrate/inhibitor cavity, as revealed by the tunnels observed by means of CAVER program. pK(a) calculations in the surface loci pointed to Glu³²7, Asp³²8, His488, and Asp¹³² as candidates for a possible in situ deprotonation step. Docking analysis of a group of inhibitors (structurally related to substrates) showed further interactions with the same two docking access sites. Interestingly, the protonated/deprotonated amine moiety of almost all compounds attained different docking poses in the active site, none of them oriented to the flavin moiety, thus producing a more variable and less productive orientations to act as substrates. Our results highlight the role of deprotonation in facilitating substrate conversion and also might reflect the necessity of inhibitor molecules to adopt specific orientations to achieve enzyme inhibition.


Assuntos
Simulação de Dinâmica Molecular , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/química , Prótons , Teoria Quântica , Sítios de Ligação , Domínio Catalítico , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Monoaminoxidase/efeitos dos fármacos , Especificidade por Substrato
20.
Molecules ; 17(2): 1388-407, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22306829

RESUMO

A series of novel benzo[b]thiophen-2-yl-3-(4-arylpiperazin-1-yl)-propan-1-one derivatives 6a-f, 7a-f and their corresponding alcohols 8a-f were synthesized and evaluated for their affinity towards 5-HT(1A) receptors. The influence of arylpiperazine moiety and benzo[b]thiophene ring substitutions on binding affinity was studied. The most promising analogue, 1-(benzo[b]thiophen-2-yl)-3-(4-(pyridin-2-yl)piperazin-1-yl)propan-1-one (7e) displayed micromolar affinity (K(i) = 2.30 µM) toward 5-HT(1A) sites. Docking studies shed light on the relevant electrostatic interactions which could explain the observed affinity for this compound.


Assuntos
Piperazinas/síntese química , Piperazinas/farmacologia , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Piperazinas/química , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA