Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 105(4): 301-312, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38346795

RESUMO

Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this ß-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based ß-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Humanos , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL11/metabolismo , Transdução de Sinais , Ligantes , Ligação Competitiva
2.
Biochem Pharmacol ; 158: 413-424, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342023

RESUMO

Upregulation of the chemokine receptor CXCR4 contributes to the progression and metastasis of both solid and hematological malignancies, rendering this receptor an attractive therapeutic target. Besides the only FDA-approved CXCR4 antagonist Plerixafor (AMD3100), multiple other classes of CXCR4-targeting molecules are under (pre-)clinical development. Nanobodies (Nb), small single variable domains of heavy-chain only antibodies from Camelids, have appeared to be ideal antibody-fragments for targeting a broad range of epitopes and cavities within GPCRs such as CXCR4. Compared to conventional antibodies, monovalent nanobodies show fast blood clearance and no effector functions. In order to further increase their binding affinities and to restore antibody-mediated effector functions, we have constructed three different bivalent nanobody Fc-fusion molecules (Nb-Fc), targeting distinct epitopes on CXCR4, via fusion of Nbs to a Fc domain of a human IgG1 antibody. Most Nb-Fc constructs show increased binding affinity and enhanced potency in CXCL12 displacement, inhibition of CXCL12-induced signaling and CXCR4-mediated HIV entry, when compared to their monovalent Nb counterparts. Moreover, Nb-Fc induced ADCC- and CDC-mediated cell-death of CXCR4-overexpressing CCRF-CEM leukemia cells and did not affect cells expressing low levels or no CXCR4. These highly potent CXCR4 Nb-Fc constructs with Fc-mediated effector functions are attractive molecules to therapeutically target CXCR4-overexpressing tumors.


Assuntos
Inibidores da Fusão de HIV/administração & dosagem , Imunoglobulina G/administração & dosagem , Receptores CXCR4/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Anticorpos de Domínio Único/administração & dosagem , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Imunoglobulina G/química , Células Jurkat , Estrutura Secundária de Proteína , Receptores CXCR4/metabolismo , Transdução de Sinais/fisiologia , Anticorpos de Domínio Único/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA