Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bone ; 148: 115941, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33813068

RESUMO

Mitochondria are essential organelles that form highly complex, interconnected dynamic networks inside cells. The GTPase mitofusin 2 (MFN2) is a highly conserved outer mitochondrial membrane protein involved in the regulation of mitochondrial morphology, which can affect various metabolic and signaling functions. The role of mitochondria in bone formation remains unclear. Since MFN2 levels increase during osteoblast (OB) differentiation, we investigated the role of MFN2 in the osteolineage by crossing mice bearing floxed Mfn2 alleles with those bearing Prx-cre to generate cohorts of conditional knock out (cKO) animals. By ex vivo microCT, cKO female mice, but not males, display an increase in cortical thickness at 8, 18, and 30 weeks, compared to wild-type (WT) littermate controls. However, the cortical anabolic response to mechanical loading was not different between genotypes. To address how Mfn2 deficiency affects OB differentiation, bone marrow-derived mesenchymal stromal cells (MSCs) from both wild-type and cKO mice were cultured in osteogenic media with different levels of ß-glycerophosphate. cKO MSCs show increased mineralization and expression of multiple markers of OB differentiation only at the lower dose. Interestingly, despite showing the expected mitochondrial rounding and fragmentation due to loss of MFN2, cKO MSCs have an increase in oxygen consumption during the first 7 days of OB differentiation. Thus, in the early phases of osteogenesis, MFN2 restrains oxygen consumption thereby limiting differentiation and cortical bone accrual during homeostasis in vivo.


Assuntos
GTP Fosfo-Hidrolases , Osteogênese , Animais , Diferenciação Celular , Osso Cortical/diagnóstico por imagem , Feminino , GTP Fosfo-Hidrolases/genética , Camundongos , Camundongos Knockout
2.
J Biol Chem ; 295(19): 6629-6640, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32165499

RESUMO

Dynamic regulation of the mitochondrial network by mitofusins (MFNs) modulates energy production, cell survival, and many intracellular signaling events, including calcium handling. However, the relative importance of specific mitochondrial functions and their dependence on MFNs vary greatly among cell types. Osteoclasts have many mitochondria, and increased mitochondrial biogenesis and oxidative phosphorylation enhance bone resorption, but little is known about the mitochondrial network or MFNs in osteoclasts. Because expression of each MFN isoform increases with osteoclastogenesis, we conditionally deleted MFN1 and MFN2 (double conditional KO (dcKO)) in murine osteoclast precursors, finding that this increased bone mass in young female mice and abolished osteoclast precursor differentiation into mature osteoclasts in vitro Defective osteoclastogenesis was reversed by overexpression of MFN2 but not MFN1; therefore, we generated mice lacking only MFN2 in osteoclasts. MFN2-deficient female mice had increased bone mass at 1 year and resistance to Receptor Activator of NF-κB Ligand (RANKL)-induced osteolysis at 8 weeks. To explore whether MFN-mediated tethering or mitophagy is important for osteoclastogenesis, we overexpressed MFN2 variants defective in either function in dcKO precursors and found that, although mitophagy was dispensable for differentiation, tethering was required. Because the master osteoclastogenic transcriptional regulator nuclear factor of activated T cells 1 (NFATc1) is calcium-regulated, we assessed calcium release from the endoplasmic reticulum and store-operated calcium entry and found that the latter was blunted in dcKO cells. Restored osteoclast differentiation by expression of intact MFN2 or the mitophagy-defective variant was associated with normalization of store-operated calcium entry and NFATc1 levels, indicating that MFN2 controls mitochondrion-endoplasmic reticulum tethering in osteoclasts.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Diferenciação Celular , GTP Fosfo-Hidrolases/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/genética , Camundongos , Camundongos Knockout , Mitofagia , Fatores de Transcrição NFATC/genética , Osteoclastos/citologia
3.
JBMR Plus ; 3(1): 14-22, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680359

RESUMO

Alternative NF-κB signaling promotes osteoclastogenesis and pathological bone loss, but the effect of sex on phenotype has not been explored. We disrupted alternative NF-κB signaling by deletion of upstream kinase NF-κB-inducing kinase (NIK) or NF-κB subunit RelB and found that both NIK-deficient and RelB-deficient female mice possessed more than twofold higher trabecular bone mass compared to controls, whereas no differences were observed in males. In vitro, RelB-deficient precursors from female mice showed a more severe osteoclast (OC) differentiation defect than male, while WT had no sex bias. Next, we asked whether pharmacologic activation of alternative NF-κB by inhibitor of apoptosis (IAP) antagonist BV6 has sex-dependent effects on bone. Unlike male mice that lost bone, female mice on BV6 for 4 weeks showed no changes in either trabecular bone mass or OC number. Because estrogen generally suppresses NF-κB, we hypothesized that estrogen protects bone from BV6 effects in vivo. Thus, we performed ovariectomy or sham surgery in female mice, then treated with BV6 or vehicle for 4 weeks. Although ovariectomy caused bone loss, BV6 did not have any additional impact, suggesting that direct estrogen effects do not cause resistance to BV6 in vivo. The osteopenic effects of IAP antagonists in males may have implications for their use in cancer therapy. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

4.
Bone ; 121: 243-254, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659980

RESUMO

BACKGROUND: NF-κB essential modulator (NEMO), encoded by IKBKG, is necessary for activation of the ubiquitous transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Animal studies suggest NEMO is required for NF-κB mediated bone homeostasis, but this has not been thoroughly studied in humans. IKBKG loss-of-function mutation causes incontinentia pigmenti (IP), a rare X-linked disease featuring linear hypopigmentation, alopecia, hypodontia, and immunodeficiency. Single case reports describe osteopetrosis (OPT) in boys carrying hypomorphic IKBKG mutations. METHOD: We studied the bone phenotype in women with IP with evaluation of radiographs of the spine and non-dominant arm and leg; lumbar spine and femoral neck aBMD using DXA; µ-CT and histomorphometry of trans-iliac crest biopsy specimens; bone turnover markers; and cellular phenotype in bone marrow skeletal (stromal) stem cells (BM-MSCs) in a cross-sectional, age-, sex-, and BMI-matched case-control study. X-chromosome inactivation was measured in blood leucocytes and BM-MSCs using a PCR method with methylation of HpaII sites. NF-κB activity was quantitated in BM-MSCs using a luciferase NF-κB reporter assay. RESULTS: Seven Caucasian women with IP (age: 24-67 years and BMI: 20.0-35.2 kg/m2) and IKBKG mutation (del exon 4-10 (n = 4); c.460C>T (n = 3)) were compared to matched controls. The IKBKG mutation carriers had extremely skewed X-inactivation (>90:10%) in blood, but not in BM-MSCs. NF-κB activity was lower in BM-MSCs from IKBKG mutation carriers (n = 5) compared to controls (3094 ±â€¯679 vs. 5422 ±â€¯1038/µg protein, p < 0.01). However, no differences were identified on skeletal radiographics, aBMD, µ-architecture of the iliac crest, or bone turnover markers. The IKBKG mutation carriers had a 1.7-fold greater extent of eroded surfaces relative to osteoid surfaces (p < 0.01), and a 2.0-fold greater proportion of arrested reversal surface relative to active reversal surface (p < 0.01). CONCLUSION: Unlike mutation-positive males, the IKBKG mutation-positive women did not manifest OPT.


Assuntos
Quinase I-kappa B/genética , Osteopetrose/genética , Adulto , Idoso , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Osteopetrose/patologia , Adulto Jovem
5.
RMD Open ; 3(1): e000353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405470

RESUMO

OBJECTIVES: To assess the performance of circulating vascular endothelial growth factor (VEGF) levels as a tool for diagnosing giant cell arteritis (GCA) in a cohort of patients referred for assessment of suspected GCA. METHODS: We selected 298 patients recruited to the multicentre study Temporal Artery Biopsy versus Ultrasound in diagnosis of suspected GCA (TABUL). In a random subset of 26 biopsy-proven GCA cases and 26 controls, serum from weeks 0, 2 and 26 was analysed for VEGF concentration using ELISA. VEGF concentration at week 0 was used to generate a receiver-operating characteristic curve and thereby identify a cut-off for an abnormal result which was used to analyse the full patient cohort. Sections of paraffin-embedded temporal artery were stained by immunohistochemistry for VEGF. RESULTS: The mean (95% CI) VEGF concentration at week 0 was 873 pg/mL (631 to 1110) in 26 patients versus 476 pg/mL (328 to 625) in 26 controls (p=0.017). This difference was not observed at any other time point. The optimal cut-off of 713 pg/mL was applied to the whole patient cohort (n=298), yielding sensitivity of 32% and specificity of 85%. This was not improved by combination with any clinical parameters. When patients with biopsy-proven GCA were compared with controls, sensitivity was 58% and specificity remained 85%. Sections of biopsy from biopsy-positive GCA showed intense staining in the adventitia which was not seen in controls. CONCLUSIONS: Serum VEGF concentration predicts biopsy positivity but is not useful for differentiating clinical cases of GCA from controls. Further studies into VEGF as a prognostic marker and therapeutic target are warranted. TRIAL REGISTRATION NUMBER: NCT00974883; Post-results.

6.
Calcif Tissue Int ; 100(6): 609-618, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28275825

RESUMO

BACKGROUND: Osteoarthritis (OA) is a progressively degenerative joint disease influenced by structural and metabolic factors. There is growing evidence that subchondral bone is involved in both symptomatic and structural progression in OA. The Wnt pathway has been implicated in the progression of OA but the expression and function of the Wnt inhibitors, Dikkopf (DKK-1) and sclerostin (SOST), are unclear. METHODS: We examined the regional distribution of DKK-1 and SOST in subchondral bone of the femoral head using resection specimens following arthroplasty in patients presenting with end-stage OA. Cylindrical cores for immunohistochemistry were taken through midpoint of full thickness cartilage defect, partial cartilage defect, through base of osteophyte and through macroscopically normal cartilage. RESULTS: Subchondral bone was thickest in cores taken from regions with full cartilage defect and thinnest in cores taken from osteophyte regions. In subchondral bone, expression of both DKK-1 and SOST was observed exclusively in osteocytes. Expression was highest in subchondral bone in cores taken from regions with partial but not full thickness cartilage defects. DKK-1 but not SOST was expressed by chondrocytes in cores with macroscopically normal cartilage. CONCLUSION: The current study describes the regional cellular distribution of SOST and DKK-1 in hip OA. Expression was highest in the osteocytes in bone underlying partial thickness cartilage defects. It is however not clear if this is a cause or a consequence of alterations in the overlying cartilage. However, it is suggestive of an active remodeling process which might be targeted by disease-modifying agents.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem Articular/metabolismo , Fêmur/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteoartrite/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Remodelação Óssea/fisiologia , Condrócitos/metabolismo , Marcadores Genéticos , Quadril/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteócitos/metabolismo , Via de Sinalização Wnt/fisiologia
7.
PLoS One ; 11(11): e0165462, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27893751

RESUMO

Despite differences in the phamacokinetics of 25-hydroxycholecalciferol (25(OH)D3) and 25-hydroxyergocalciferol (25(OH)D2) in man, the effects of these and their 1α-hydroxylated forms (1,25(OH)2D3 and 1,25(OH)2D2) on cellular activity of vitamin D-responsive cells have hardly been compared. We studied differences in the effects of these metabolites on cell number, gene transcription, protein expression and mineralisation of cultured human bone marrow-derived stromal cells (hBMSC) and rapidly mineralising mouse 2T3 osteoblasts. 50-1000 nM 25(OH) and 0.05-10 nM 1,25(OH)2 metabolites were used. At high concentrations, 25(OH)D2/D3 and 1,25(OH)2D2/D3 suppressed cell number in both human and mouse cells. The suppression was greater with cholecalciferol (D3) metabolites than with those of ergocalciferol (D2). In both cell types, 25(OH)D2 and 25(OH)D3 increased the expression of osteopontin, osteocalcin, collagen-1, receptor activator of nuclear factor kappa-B ligand, vitamin D receptor, CYP24A1 and CYP27B1 genes. Whereas there was little or no difference between the effects of 25(OH)D2 and 25(OH)D3 in hBMSCs, differences were observed in the magnitude of the effects of these metabolites on the expression of most studied genes in 2T3 cells. Alkaline phosphatase (ALP) activity was increased by 25(OH)D2/D3 and 1,25(OH)2D2/D3 in hBMSC and 2T3 cells, and the increase was greater with the D3 metabolites at high concentrations. In hBMSCs, mineralisation was also increased by 25(OH)D2/D3 and 1,25(OH)2D2/D3 at high concentrations, with D3 metabolites exerting a greater influence. In 2T3 cells, the effects of these compounds on mineralisation were stimulatory at low concentrations and inhibitory when high concentrations were used. The suppression at high concentrations was greater with the D3 metabolites. These findings suggest that there are differences in the effects of 25-hydroxy and 1α,25(OH)2 metabolites of D3 and D2 on human preosteoblasts and mouse osteoblasts, with the D3 metabolites being more potent in suppressing cell number, increasing ALP activity and influencing mineralisation.


Assuntos
25-Hidroxivitamina D 2/farmacologia , Calcifediol/farmacologia , Calcitriol/farmacologia , Ergocalciferóis/farmacologia , Osteoblastos/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Densidade Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Osteoblastos/fisiologia , Células Estromais/citologia
8.
Bone Res ; 4: 16030, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27785371

RESUMO

The effects of vitamin D on osteoblast mineralization are well documented. Reports of the effects of vitamin D on osteoclasts, however, are conflicting, showing both inhibition and stimulation. Finding that resorbing osteoclasts in human bone express vitamin D receptor (VDR), we examined their response to different concentrations of 25-hydroxy vitamin D3 [25(OH)D3] (100 or 500 nmol·L-1) and 1,25-dihydroxy vitamin D3 [1,25(OH)2D3] (0.1 or 0.5 nmol·L-1) metabolites in cell cultures. Specifically, CD14+ monocytes were cultured in charcoal-stripped serum in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Tartrate-resistant acid phosphatase (TRAP) histochemical staining assays and dentine resorption analysis were used to identify the size and number of osteoclast cells, number of nuclei per cell and resorption activity. The expression of VDR was detected in human bone tissue (ex vivo) by immunohistochemistry and in vitro cell cultures by western blotting. Quantitative reverse transcription-PCR (qRT-PCR) was used to determine the level of expression of vitamin D-related genes in response to vitamin D metabolites. VDR-related genes during osteoclastogenesis, shown by qRT-PCR, was stimulated in response to 500 nmol·L-1 of 25(OH)D3 and 0.1-0.5 nmol·L-1 of 1,25(OH)2D3, upregulating cytochrome P450 family 27 subfamily B member 1 (CYP27B1) and cytochrome P450 family 24 subfamily A member 1 (CYP24A1). Osteoclast fusion transcripts transmembrane 7 subfamily member 4 (tm7sf4) and nuclear factor of activated T-cell cytoplasmic 1 (nfatc1) where downregulated in response to vitamin D metabolites. Osteoclast number and resorption activity were also increased. Both 25(OH)D3 and 1,25(OH)2D3 reduced osteoclast size and number when co-treated with RANKL and M-CSF. The evidence for VDR expression in resorbing osteoclasts in vivo and low-dose effects of 1,25(OH)2D3 on osteoclasts in vitro may therefore provide insight into the effects of clinical vitamin D treatments, further providing a counterpoint to the high-dose effects reported from in vitro experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA