Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 234, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789799

RESUMO

Vanishing white matter (VWM) is a leukodystrophy caused by biallelic pathogenic variants in eukaryotic translation initiation factor 2B. To date, it remains unclear which factors contribute to VWM pathogenesis. Here, we investigated the basis of VWM pathogenesis using the 2b5ho mouse model. We first mapped the temporal proteome in the cerebellum, corpus callosum, cortex, and brainstem of 2b5ho and wild-type (WT) mice. Protein changes observed in 2b5ho mice were then cross-referenced with published proteomic datasets from VWM patient brain tissue to define alterations relevant to the human disease. By comparing 2b5ho mice with their region- and age-matched WT counterparts, we showed that the proteome in the cerebellum and cortex of 2b5ho mice was already dysregulated prior to pathology development, whereas proteome changes in the corpus callosum only occurred after pathology onset. Remarkably, protein changes in the brainstem were transient, indicating that a compensatory mechanism might occur in this region. Importantly, 2b5ho mouse brain proteome changes reflect features well-known in VWM. Comparison of the 2b5ho mouse and VWM patient brain proteomes revealed shared changes. These could represent changes that contribute to the disease or even drive its progression in patients. Taken together, we show that the 2b5ho mouse brain proteome is affected in a region- and time-dependent manner. We found that the 2b5ho mouse model partly replicates the human disease at the protein level, providing a resource to study aspects of VWM pathogenesis by highlighting alterations from early to late disease stages, and those that possibly drive disease progression.


Assuntos
Modelos Animais de Doenças , Leucoencefalopatias , Proteoma , Proteômica , Substância Branca , Animais , Camundongos , Humanos , Proteoma/metabolismo , Leucoencefalopatias/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Substância Branca/metabolismo , Substância Branca/patologia , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/genética , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL , Cerebelo/metabolismo , Cerebelo/patologia
2.
Ann Neurol ; 92(5): 895-901, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35947102

RESUMO

NOTCH1 belongs to the NOTCH family of proteins that regulate cell fate and inflammatory responses. Somatic and germline NOTCH1 variants have been implicated in cancer, Adams-Oliver syndrome, and cardiovascular defects. We describe 7 unrelated patients grouped by the presence of leukoencephalopathy with calcifications and heterozygous de novo gain-of-function variants in NOTCH1. Immunologic profiling showed upregulated CSF IP-10, a cytokine secreted downstream of NOTCH1 signaling. Autopsy revealed extensive leukoencephalopathy and microangiopathy with vascular calcifications. This evidence implicates that heterozygous gain-of-function variants in NOTCH1 lead to a chronic central nervous system (CNS) inflammatory response resulting in a calcifying microangiopathy with leukoencephalopathy. ANN NEUROL 2022;92:895-901.


Assuntos
Displasia Ectodérmica , Leucoencefalopatias , Humanos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Quimiocina CXCL10 , Sistema Nervoso Central/metabolismo
3.
Fluids Barriers CNS ; 19(1): 18, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227276

RESUMO

The neurovascular unit (NVU) is a highly organized multicellular system localized in the brain, formed by neuronal, glial (astrocytes, oligodendrocytes, and microglia) and vascular (endothelial cells and pericytes) cells. The blood-brain barrier, a complex and dynamic endothelial cell barrier in the brain microvasculature that separates the blood from the brain parenchyma, is a component of the NVU. In a variety of neurological disorders, including Alzheimer's disease, multiple sclerosis, and stroke, dysfunctions of the NVU occurs. There is, however, a lack of knowledge regarding the NVU function in leukodystrophies, which are rare monogenic disorders that primarily affect the white matter. Since leukodystrophies are rare diseases, human brain tissue availability is scarce and representative animal models that significantly recapitulate the disease are difficult to develop. The introduction of human induced pluripotent stem cells (hiPSC) now makes it possible to surpass these limitations while maintaining the ability to work in a biologically relevant human context and safeguarding the genetic background of the patient. This review aims to provide further insights into the NVU functioning in leukodystrophies, with a special focus on iPSC-derived models that can be used to dissect neurovascular pathophysiology in these diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Animais , Astrócitos , Barreira Hematoencefálica , Células Endoteliais , Humanos
4.
Acta Neuropathol Commun ; 9(1): 103, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082828

RESUMO

The blood-brain barrier is a dynamic endothelial cell barrier in the brain microvasculature that separates the blood from the brain parenchyma. Specialized brain endothelial cells, astrocytes, neurons, microglia and pericytes together compose the neurovascular unit and interact to maintain blood-brain barrier function. A disturbed brain barrier function is reported in most common neurological disorders and may play a role in disease pathogenesis. However, a comprehensive overview of how the neurovascular unit is affected in a wide range of rare disorders is lacking. Our aim was to provide further insights into the neuropathology of the neurovascular unit in leukodystrophies to unravel its potential pathogenic role in these diseases. Leukodystrophies are monogenic disorders of the white matter due to defects in any of its structural components. Single leukodystrophies are exceedingly rare, and availability of human tissue is unique. Expression of selective neurovascular unit markers such as claudin-5, zona occludens 1, laminin, PDGFRß, aquaporin-4 and α-dystroglycan was investigated in eight different leukodystrophies using immunohistochemistry. We observed tight junction rearrangements, indicative of endothelial dysfunction, in five out of eight assessed leukodystrophies of different origin and an altered aquaporin-4 distribution in all. Aquaporin-4 redistribution indicates a general astrocytic dysfunction in leukodystrophies, even in those not directly related to astrocytic pathology or without prominent reactive astrogliosis. These findings provide further evidence for dysfunction in the orchestration of the neurovascular unit in leukodystrophies and contribute to a better understanding of the underlying disease mechanism.


Assuntos
Doença de Alexander/patologia , Doenças Autoimunes do Sistema Nervoso/patologia , Barreira Hematoencefálica/patologia , Leucodistrofia Metacromática/patologia , Malformações do Sistema Nervoso/patologia , Doença de Pelizaeus-Merzbacher/patologia , Adolescente , Adulto , Idoso , Doença de Alexander/genética , Doenças Autoimunes do Sistema Nervoso/genética , Criança , Pré-Escolar , Feminino , Humanos , Leucodistrofia Metacromática/genética , Masculino , Malformações do Sistema Nervoso/genética , Acoplamento Neurovascular/fisiologia , Doença de Pelizaeus-Merzbacher/genética
5.
FASEB J ; 33(4): 5729-5740, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30673509

RESUMO

Exposure to early-life stress (ES) is associated with cognitive and metabolic deficits in adulthood. The role of early nutrition in programming these long-term effects is largely unknown. We focused on essential ω-3 and ω-6 long-chain polyunsaturated fatty acids (LCPUFA) and investigated whether ES affects central and peripheral FA profiles, as well as if and how an early diet with increased availability of ω-3 LCPUFA ( via lowering ω-6/ω-3 ratio) protects against ES-induced impairments. ES exposure [limited nesting and bedding paradigm from postnatal day (P)2 to P9] altered central and peripheral FA profiles in mice. An early diet with low ω-6/ω-3 ratio from P2 to P42 notably prevented the ES-induced cognitive impairments, and the alterations in hippocampal newborn cell survival and in CD68+ microglia, without affecting the ES-induced metabolic alterations. Other markers for hippocampal plasticity, apoptosis, and maternal care were unaffected by ES or diet. Our findings highlight the importance of early dietary lipid quality for later cognition in ES-exposed populations.-Yam, K.-Y., Schipper, L., Reemst, K., Ruigrok, S. R., Abbink, M. R., Hoeijmakers, L., Naninck, E. F. G., Zarekiani, P., Oosting, A., Van der Beek, E. M., Lucassen, P. J., Korosi, A. Increasing availability of ω-3 fatty acid in the early-life diet prevents the early-life stress-induced cognitive impairments without affecting metabolic alterations.


Assuntos
Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Ácidos Graxos Ômega-3/metabolismo , Estresse Psicológico/metabolismo , Animais , Apoptose/fisiologia , Cognição/fisiologia , Dieta/métodos , Ácidos Graxos Ômega-6/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA