Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200842

RESUMO

Sex determination in mammals hinges on a cell fate decision in the fetal bipotential gonad between formation of male Sertoli cells or female granulosa cells. While this decision normally is permanent, loss of key cell fate regulators such as the transcription factors Dmrt1 and Foxl2 can cause postnatal transdifferentiation from Sertoli to granulosa-like (Dmrt1) or vice versa (Foxl2). Here, we examine the mechanism of male-to-female transdifferentiation in mice carrying either a null mutation of Dmrt1 or a point mutation, R111G, that alters the DNA-binding motif and causes human XY gonadal dysgenesis and sex reversal. We first define genes misexpressed during transdifferentiation and then show that female transcriptional regulators driving transdifferentiation in the mutant XY gonad (ESR2, LRH1, FOXL2) bind chromatin sites related to those normally bound in the XX ovary. We next define gene expression changes and abnormal chromatin compartments at the onset of transdifferentiation that may help destabilize cell fate and initiate the transdifferentiation process. We model the R111G mutation in mice and show that it causes dominant gonadal dysgenesis, analogous to its human phenotype but less severe. We show that R111G partially feminizes the testicular transcriptome and causes dominant disruption of DMRT1 binding specificity in vivo. These data help illuminate how transdifferentiation occurs when sexual cell fate maintenance is disrupted and identify chromatin sites and transcripts that may play key roles in the transdifferentiation process.


Assuntos
Transdiferenciação Celular , Disgenesia Gonadal , Animais , Feminino , Humanos , Masculino , Camundongos , Transdiferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Genômica , Disgenesia Gonadal/metabolismo , Gônadas/metabolismo , Processos de Determinação Sexual , Testículo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
PLoS Genet ; 18(2): e1010088, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192609

RESUMO

The mammalian nuclear hormone receptors LRH1 (NR5A2) and SF1 (NR5A1) are close paralogs that can bind the same DNA motif and play crucial roles in gonadal development and function. Lrh1 is essential for follicle development in the ovary and has been proposed to regulate steroidogenesis in the testis. Lrh1 expression in the testis is highly elevated by loss of the sex regulator Dmrt1, which triggers male-to-female transdifferentiation of Sertoli cells. While Sf1 has a well-defined and crucial role in testis development, no function for Lrh1 in the male gonad has been reported. Here we use conditional genetics to examine Lrh1 requirements both in gonadal cell fate reprogramming and in normal development of the three major cell lineages of the mouse testis. We find that loss of Lrh1 suppresses sexual transdifferentiation, confirming that Lrh1 can act as a key driver in reprogramming sexual cell fate. In otherwise wild-type testes, we find that Lrh1 is dispensable in Leydig cells but is required in Sertoli cells for their proliferation, for seminiferous tubule morphogenesis, for maintenance of the blood-testis barrier, for feedback regulation of androgen production, and for support of spermatogenesis. Expression profiling identified misexpressed genes likely underlying most aspects of the Sertoli cell phenotype. In the germ line we found that Lrh1 is required for maintenance of functional spermatogonia, and hence mutants progressively lose spermatogenesis. Reduced expression of the RNA binding factor Nxf2 likely contributes to the SSC defect. Unexpectedly, however, over time the Lrh1 mutant germ line recovered abundant spermatogenesis and fertility. This finding indicates that severe germ line depletion triggers a response allowing mutant spermatogonia to recover the ability to undergo complete spermatogenesis. Our results demonstrate that Lrh1, like Sf1, is an essential regulator of testis development and function but has a very distinct repertoire of functions.


Assuntos
Células de Sertoli , Testículo , Animais , Feminino , Masculino , Mamíferos , Camundongos , Diferenciação Sexual , Espermatogênese/genética , Espermatogônias , Testículo/metabolismo
3.
Sex Dev ; 16(2-3): 112-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515237

RESUMO

Transcriptional regulators related to the invertebrate sexual regulators doublesex and mab-3 occur throughout metazoans and control sex in most animal groups. Seven of these DMRT genes are found in mammals, and mouse genetics has shown that one, Dmrt1, plays a crucial role in testis differentiation, both in germ cells and somatic cells. Deletions and, more recently, point mutations affecting human DMRT1 have demonstrated that its heterozygosity is associated with 46,XY complete gonadal dysgenesis. Most of our detailed knowledge of DMRT1 function in the testis, the focus of this review, derives from mouse studies, which have revealed that DMRT1 is essential for male somatic and germ cell differentiation and maintenance of male somatic cell fate after differentiation. Moreover, ectopic DMRT1 can reprogram differentiated female granulosa cells into male Sertoli-like cells. The ability of DMRT1 to control sexual cell fate likely derives from at least 3 properties. First, DMRT1 functionally collaborates with another key male sex regulator, SOX9, and possibly other proteins to maintain and reprogram sexual cell fate. Second, and related, DMRT1 appears to function as a pioneer transcription factor, binding "closed" inaccessible chromatin and promoting its opening to allow binding by other regulators including SOX9. Third, DMRT1 binds DNA by a highly unusual form of interaction and can bind with different stoichiometries.


Assuntos
Disgenesia Gonadal , Diferenciação Sexual , Fatores de Transcrição , Animais , Feminino , Humanos , Masculino , Camundongos , Células Germinativas/metabolismo , Diferenciação Sexual/genética , Testículo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nucleic Acids Res ; 49(11): 6144-6164, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34096593

RESUMO

Mammalian sexual development commences when fetal bipotential progenitor cells adopt male Sertoli (in XY) or female granulosa (in XX) gonadal cell fates. Differentiation of these cells involves extensive divergence in chromatin state and gene expression, reflecting distinct roles in sexual differentiation and gametogenesis. Surprisingly, differentiated gonadal cell fates require active maintenance through postnatal life to prevent sexual transdifferentiation and female cell fate can be reprogrammed by ectopic expression of the sex regulator DMRT1. Here we examine how DMRT1 reprograms granulosa cells to Sertoli-like cells in vivo and in culture. We define postnatal sex-biased gene expression programs and identify three-dimensional chromatin contacts and differentially accessible chromatin regions (DARs) associated with differentially expressed genes. Using a conditional transgene we find DMRT1 only partially reprograms the ovarian transcriptome in the absence of SOX9 and its paralog SOX8, indicating that these factors functionally cooperate with DMRT1. ATAC-seq and ChIP-seq show that DMRT1 induces formation of many DARs that it binds with SOX9, and DMRT1 is required for binding of SOX9 at most of these. We suggest that DMRT1 can act as a pioneer factor to open chromatin and allow binding of SOX9, which then cooperates with DMRT1 to reprogram sexual cell fate.


Assuntos
Reprogramação Celular/genética , Células da Granulosa/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células de Sertoli/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Cromatina/metabolismo , DNA/metabolismo , Feminino , Masculino , Camundongos , Elementos Reguladores de Transcrição , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transcriptoma
5.
EMBO Rep ; 20(8): e48577, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31267656

RESUMO

In most animals, sexual reproduction results in a 1:1 ratio of females to males. For several sectors of agriculture, for example, milk or egg production, only a single sex is needed. Biasing the sex ratio so that only offspring of the desired sex are produced has the potential to increase breeding efficiency. In this issue of EMBO Reports, Yosef et al [1] demonstrate a genetic approach to bias the sex ratio in mice by specifically disrupting essential genes in male embryos. Their approach is an important first step toward generating sex-ratio biasing applications for agriculture.


Assuntos
Mamíferos , Razão de Masculinidade , Animais , Cruzamento , Feminino , Técnicas Genéticas , Masculino , Camundongos , Reprodução
6.
Sci Rep ; 8(1): 16410, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401915

RESUMO

Mutations in the SALL4 gene cause human syndromes with defects in multiple organs. Sall4 expression declines rapidly in post-gastrulation mouse embryos, and our understanding of the requirement of Sall4 in animal development is still limited. To assess the contributions of Sall4 expressing cells to developing mouse embryos, we monitored temporal changes of the contribution of Sall4 lineages using a Sall4 GFP-CreERT2 knock-in mouse line and recombination-dependent reporter lines. By administering tamoxifen at various time points we observed that the contributions of Sall4 lineages to the axial level were rapidly restricted from the entire body to the posterior part of the body. The contribution to forelimbs, hindlimbs, craniofacial structures and external genitalia also declined after gastrulation with different temporal dynamics. We also detected Sall4 lineage contributions to the extra-embryonic tissues, such as the yolk sac and umbilical cord, in a temporal manner. These Sall4 lineage contributions provide insights into potential roles of Sall4 during mammalian embryonic development. In postnatal males, long-term lineage tracing detected Sall4 lineage contributions to the spermatogonial stem cell pool during spermatogenesis. The Sall4 GFP-CreERT2 line can serve as a tool to monitor spatial-temporal contributions of Sall4 lineages as well as to perform gene manipulations in Sall4-expressing lineages.


Assuntos
Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Espermatozoides/metabolismo , Fatores de Transcrição/genética , Células-Tronco Germinativas Adultas/metabolismo , Animais , Éxons/genética , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatogônias/metabolismo , Espermatozoides/citologia , Fatores de Tempo
7.
J Neurosci ; 38(42): 9105-9121, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30143575

RESUMO

Specification of dorsoventral regional identity in progenitors of the developing telencephalon is a first pivotal step in the development of the cerebral cortex and basal ganglia. Previously, we demonstrated that the two zinc finger doublesex and mab-3 related (Dmrt) genes, Dmrt5 (Dmrta2) and Dmrt3, which are coexpressed in high caudomedial to low rostrolateral gradients in the cerebral cortical primordium, are separately needed for normal formation of the cortical hem, hippocampus, and caudomedial neocortex. We have now addressed the role of Dmrt3 and Dmrt5 in controlling dorsoventral division of the telencephalon in mice of either sex by comparing the phenotypes of single knock-out (KO) with double KO embryos and by misexpressing Dmrt5 in the ventral telencephalon. We find that DMRT3 and DMRT5 act as critical regulators of progenitor cell dorsoventral identity by repressing ventralizing regulators. Early ventral fate transcriptional regulators expressed in the dorsal lateral ganglionic eminence, such as Gsx2, are upregulated in the dorsal telencephalon of Dmrt3;Dmrt5 double KO embryos and downregulated when ventral telencephalic progenitors express ectopic Dmrt5 Conditional overexpression of Dmrt5 throughout the telencephalon produces gene expression and structural defects that are highly consistent with reduced GSX2 activity. Further, Emx2;Dmrt5 double KO embryos show a phenotype similar to Dmrt3;Dmrt5 double KO embryos, and both DMRT3, DMRT5 and the homeobox transcription factor EMX2 bind to a ventral telencephalon-specific enhancer in the Gsx2 locus. Together, our findings uncover cooperative functions of DMRT3, DMRT5, and EMX2 in dividing dorsal from ventral in the telencephalon.SIGNIFICANCE STATEMENT We identified the DMRT3 and DMRT5 zinc finger transcription factors as novel regulators of dorsoventral patterning in the telencephalon. Our data indicate that they have overlapping functions and compensate for one another. The double, but not the single, knock-out produces a dorsal telencephalon that is ventralized, and olfactory bulb tissue takes over most remaining cortex. Conversely, overexpressing Dmrt5 throughout the telencephalon causes expanded expression of dorsal gene determinants and smaller olfactory bulbs. Furthermore, we show that the homeobox transcription factor EMX2 that is coexpressed with DMRT3 and DMRT5 in cortical progenitors cooperates with them to maintain dorsoventral patterning in the telencephalon. Our study suggests that DMRT3/5 function with EMX2 in positioning the pallial-subpallial boundary by antagonizing the ventral homeobox transcription factor GSX2.


Assuntos
Proteínas de Homeodomínio/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Telencéfalo/embriologia , Fatores de Transcrição/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Telencéfalo/metabolismo , Fatores de Transcrição/genética
8.
Curr Biol ; 28(4): 623-629.e3, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29429615

RESUMO

Nervous systems display intriguing patterns of sexual dimorphisms across the animal kingdom, but the mechanisms that generate such dimorphisms remain poorly characterized. In the nematode Caenorhabditis elegans, a number of neurons present in both sexes are synaptically connected to one another in a sexually dimorphic manner as a result of sex-specific synaptic pruning and maintenance [1-3]. We define here a mechanism for the male-specific maintenance of the synaptic connections of the phasmid sensory neuron PHB and its male-specific target, the sex-shared AVG interneuron. We show that the C. elegans Netrin ortholog UNC-6, signaling through its cognate receptor UNC-40/DCC and the CED-5/DOCK180 guanine nucleotide exchange factor, is both required and sufficient for male-specific synaptic maintenance. The dimorphism of unc-6 activity is brought about by sex-specific regulation of unc-6 transcription. Although unc-6 is transcribed in the AVG neuron of males and hermaphrodites during juvenile stages, unc-6 expression is downregulated in AVG in hermaphrodites during sexual maturation but is maintained during sexual maturation of males. unc-6 downregulation in hermaphrodites is conferred by the master regulator of hermaphrodite sexual identity, the Gli/CI homolog TRA-1, which antagonizes the non-sex-specific function of the LIM homeobox gene lin-11, a terminal selector and activator of unc-6 in AVG. Preventing the downregulation of unc-6 in AVG of hermaphrodites through ectopic expression of unc-6 in transgenic animals results in the maintenance of the PHB>AVG synapses in hermaphrodites. Taken together, intersectional transcriptional regulation of unc-6/Netrin is required and sufficient to cell autonomously pattern sexually dimorphic synapses.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Netrinas/genética , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Organismos Hermafroditas/genética , Organismos Hermafroditas/crescimento & desenvolvimento , Organismos Hermafroditas/fisiologia , Masculino , Netrinas/metabolismo , Caracteres Sexuais
9.
Cereb Cortex ; 28(2): 493-509, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031177

RESUMO

Mice that are constitutively null for the zinc finger doublesex and mab-3 related (Dmrt) gene, Dmrt5/Dmrta2, show a variety of patterning abnormalities in the cerebral cortex, including the loss of the cortical hem, a powerful cortical signaling center. In conditional Dmrt5 gain of function and loss of function mouse models, we generated bidirectional changes in the neocortical area map without affecting the hem. Analysis indicated that DMRT5, independent of the hem, directs the rostral-to-caudal pattern of the neocortical area map. Thus, DMRT5 joins a small number of transcription factors shown to control directly area size and position in the neocortex. Dmrt5 deletion after hem formation also reduced hippocampal size and shifted the position of the neocortical/paleocortical boundary. Dmrt3, like Dmrt5, is expressed in a gradient across the cortical primordium. Mice lacking Dmrt3 show cortical patterning defects akin to but milder than those in Dmrt5 mutants, perhaps in part because Dmrt5 expression increases in the absence of Dmrt3. DMRT5 upregulates Dmrt3 expression and negatively regulates its own expression, which may stabilize the level of DMRT5. Together, our findings indicate that finely tuned levels of DMRT5, together with DMRT3, regulate patterning of the cerebral cortex.


Assuntos
Desenvolvimento Embrionário/fisiologia , Hipocampo/metabolismo , Neocórtex/metabolismo , Fatores de Transcrição/biossíntese , Animais , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neurogênese/fisiologia
10.
Development ; 144(22): 4137-4147, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28982686

RESUMO

The mitosis-meiosis transition is essential for spermatogenesis. Specific and timely downregulation of the transcription factor DMRT1, and consequent induction of Stra8 expression, is required for this process in mammals, but the molecular mechanism has remained unclear. Here, we show that ß-TrCP, the substrate recognition component of an E3 ubiquitin ligase complex, targets DMRT1 for degradation and thereby controls the mitosis-meiosis transition in mouse male germ cells. Conditional inactivation of ß-TrCP2 in male germ cells of ß-TrCP1 knockout mice resulted in sterility due to a lack of mature sperm. The ß-TrCP-deficient male germ cells did not enter meiosis, but instead underwent apoptosis. The induction of Stra8 expression was also attenuated in association with the accumulation of DMRT1 at the Stra8 promoter in ß-TrCP-deficient testes. DMRT1 contains a consensus ß-TrCP degron sequence that was found to bind ß-TrCP. Overexpression of ß-TrCP induced the ubiquitylation and degradation of DMRT1. Heterozygous deletion of Dmrt1 in ß-TrCP-deficient spermatogonia increased meiotic cells with a concomitant reduction of apoptosis. Collectively, our data indicate that ß-TrCP regulates the transition from mitosis to meiosis in male germ cells by targeting DMRT1 for degradation.


Assuntos
Meiose , Mitose , Espermatozoides/citologia , Espermatozoides/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Fertilidade , Deleção de Genes , Marcação de Genes , Heterozigoto , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Túbulos Seminíferos/patologia , Espermatogênese , Especificidade por Substrato , Testículo/patologia , Fatores de Transcrição/metabolismo , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/química , Proteínas Contendo Repetições de beta-Transducina/metabolismo
11.
Stem Cell Res ; 24: 195-202, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28774758

RESUMO

DMRT genes encode a deeply conserved family of transcription factors that share a unique DNA binding motif, the DM domain. DMRTs regulate development in a broad variety of metazoans and they appear to have controlled sexual differentiation for hundreds of millions of years. In mice, starting during embryonic development, three Dmrt genes act sequentially to help establish and maintain spermatogenesis. Dmrt1 has notably diverse functions that include repressing pluripotency genes and promoting mitotic arrest in embryonic germ cells, reactivating prospermatogonia perinatally, establishing and maintaining spermatogonial stem cells (SSCs), promoting spermatogonial differentiation, and controlling the mitosis/meiosis switch. Dmrt6 acts in differentiating spermatogonia to coordinate an orderly exit from the mitotic/spermatogonial program and allow proper timing of entry to the meiotic/spermatocyte program. Finally, Dmrt7 takes over during the first meiotic prophase to help choreograph a transition in histone modifications that maintains transcriptional silencing of the sex chromosomes. The combined action of these three Dmrt genes helps ensure robust and sustainable spermatogenesis.


Assuntos
Mamíferos/metabolismo , Espermatogênese , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Masculino , Modelos Biológicos , Espermatozoides/citologia , Espermatozoides/metabolismo
12.
Nucleic Acids Res ; 45(12): 7191-7211, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28472341

RESUMO

In mammalian embryonic gonads, SOX9 is required for the determination of Sertoli cells that orchestrate testis morphogenesis. To identify genetic networks directly regulated by SOX9, we combined analysis of SOX9-bound chromatin regions from murine and bovine foetal testes with sequencing of RNA samples from mouse testes lacking Sox9. We found that SOX9 controls a conserved genetic programme that involves most of the sex-determining genes. In foetal testes, SOX9 modulates both transcription and directly or indirectly sex-specific differential splicing of its target genes through binding to genomic regions with sequence motifs that are conserved among mammals and that we called 'Sertoli Cell Signature' (SCS). The SCS is characterized by a precise organization of binding motifs for the Sertoli cell reprogramming factors SOX9, GATA4 and DMRT1. As SOX9 biological role in mammalian gonads is to determine Sertoli cells, we correlated this genomic signature with the presence of SOX9 on chromatin in foetal testes, therefore equating this signature to a genomic bar code of the fate of foetal Sertoli cells. Starting from the hypothesis that nuclear factors that bind to genomic regions with SCS could functionally interact with SOX9, we identified TRIM28 as a new SOX9 partner in foetal testes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Fatores de Transcrição SOX9/genética , Células de Sertoli/metabolismo , Transcriptoma , Animais , Bovinos , Cromatina/química , Cromatina/metabolismo , Embrião de Mamíferos , Feminino , Feto , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Redes Reguladoras de Genes , Masculino , Camundongos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOX9/metabolismo , Análise de Sequência de RNA , Células de Sertoli/citologia , Processos de Determinação Sexual , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 28 com Motivo Tripartido
13.
Dev Biol ; 424(2): 208-220, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274610

RESUMO

Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the Dmrt1 mutant somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldh1a1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not prevent granulosa cell specification and oogenesis or abolish fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function.


Assuntos
Ovário/embriologia , Ovário/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , Família Aldeído Desidrogenase 1 , Animais , Linhagem da Célula/efeitos dos fármacos , Feminino , Feto/embriologia , Feto/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Inativação de Genes , Genes Dominantes , Isoenzimas/metabolismo , Masculino , Mamíferos , Meiose/efeitos dos fármacos , Mesonefro/efeitos dos fármacos , Mesonefro/embriologia , Mesonefro/metabolismo , Camundongos , Ovário/efeitos dos fármacos , Receptores do Ácido Retinoico/metabolismo , Retinal Desidrogenase/metabolismo , Retinoides/farmacologia , Processos de Determinação Sexual/efeitos dos fármacos , Técnicas de Cultura de Tecidos
14.
PLoS Genet ; 12(9): e1006293, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27583450

RESUMO

Male mammals produce sperm for most of postnatal life and therefore require a robust germ line stem cell system, with precise balance between self-renewal and differentiation. Prior work established doublesex- and mab-3-related transcription factor 1 (Dmrt1) as a conserved transcriptional regulator of male sexual differentiation. Here we investigate the role of Dmrt1 in mouse spermatogonial stem cell (SSC) homeostasis. We find that Dmrt1 maintains SSCs during steady state spermatogenesis, where it regulates expression of Plzf, another transcription factor required for SSC maintenance. We also find that Dmrt1 is required for recovery of spermatogenesis after germ cell depletion. Committed progenitor cells expressing Ngn3 normally do not contribute to SSCs marked by the Id4-Gfp transgene, but do so when spermatogonia are chemically depleted using busulfan. Removal of Dmrt1 from Ngn3-positive germ cells blocks the replenishment of Id4-GFP-positive SSCs and recovery of spermatogenesis after busulfan treatment. Our data therefore reveal that Dmrt1 supports SSC maintenance in two ways: allowing SSCs to remain in the stem cell pool under normal conditions; and enabling progenitor cells to help restore the stem cell pool after germ cell depletion.


Assuntos
Espermatogênese/genética , Espermatogônias/metabolismo , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica , Espermatogônias/citologia , Fatores de Transcrição/metabolismo
15.
G3 (Bethesda) ; 5(12): 2831-41, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26497144

RESUMO

The Caenorhabditis elegans somatic gonad differs greatly between the two sexes in its pattern of cell divisions, migration, and differentiation. Despite decades of study, the genetic pathways directing early gonadal development and establishing sexual dimorphism in the gonad remain largely unknown. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in the somatic gonadal precursor cells and their daughter cells of each sex at the onset of sexual differentiation. We identified several hundred gonad-enriched transcripts, including the majority of known regulators of early gonadal development, and transgenic reporter analysis confirmed the effectiveness of this approach. Before the division of the somatic gonad precursors, few sex-biased gonadal transcripts were detectable; less than 6 hr later, after their division, we identified more than 250 sex-biased transcripts, of which about a third were enriched in the somatic gonad compared to the whole animal. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in the somatic gonadal precursor cells around the time of their first division. About 10% of male-biased transcripts had orthologs with male-biased expression in the early mouse gonad, suggesting possible conservation of gonad sex differentiation. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in the somatic gonad. Our data illustrate the power of cell-specific transcriptome analysis and suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent.


Assuntos
Caenorhabditis elegans/genética , Gônadas/metabolismo , Processos de Determinação Sexual/genética , Células-Tronco/metabolismo , Transcriptoma , Animais , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Masculino , Camundongos , Especificidade de Órgãos/genética , Fenótipo , RNA Mensageiro/genética , Reprodutibilidade dos Testes
16.
Nat Struct Mol Biol ; 22(6): 442-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26005864

RESUMO

DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.


Assuntos
DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Imunoprecipitação da Cromatina , Análise Mutacional de DNA , Dípteros , Exodesoxirribonucleases , Perfilação da Expressão Gênica , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Análise de Sequência de DNA , Sexo , Fatores de Transcrição/química , Fatores de Transcrição/genética
17.
Mol Biol Evol ; 32(5): 1296-309, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25657328

RESUMO

Sex chromosomes have evolved many times in animals and studying these replicate evolutionary "experiments" can help broaden our understanding of the general forces driving the origin and evolution of sex chromosomes. However this plan of study has been hindered by the inability to identify the sex chromosome systems in the large number of species with cryptic, homomorphic sex chromosomes. Restriction site-associated DNA sequencing (RAD-seq) is a critical enabling technology that can identify the sex chromosome systems in many species where traditional cytogenetic methods have failed. Using newly generated RAD-seq data from 12 gecko species, along with data from the literature, we reinterpret the evolution of sex-determining systems in lizards and snakes and test the hypothesis that sex chromosomes can routinely act as evolutionary traps. We uncovered between 17 and 25 transitions among gecko sex-determining systems. This is approximately one-half to two-thirds of the total number of transitions observed among all lizards and snakes. We find support for the hypothesis that sex chromosome systems can readily become trap-like and show that adding even a small number of species from understudied clades can greatly enhance hypothesis testing in a model-based phylogenetic framework. RAD-seq will undoubtedly prove useful in evaluating other species for male or female heterogamety, particularly the majority of fish, amphibian, and reptile species that lack visibly heteromorphic sex chromosomes, and will significantly accelerate the pace of biological discovery.


Assuntos
Evolução Molecular , Lagartos/genética , Processos de Determinação Sexual , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Lagartos/fisiologia , Masculino , Filogenia , Mapeamento por Restrição , Cromossomos Sexuais/genética , Serpentes/genética , Serpentes/fisiologia
18.
Curr Biol ; 25(6): 764-771, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25683803

RESUMO

Transcription factors related to the insect sex-determination gene doublesex (DMRT proteins) control sex determination and/or sexual differentiation in diverse metazoans and are implicated in transitions between sex-determining mechanisms during vertebrate evolution [1]. In mice, Dmrt1 is required for male gonadal differentiation in somatic cells and germ cells [2-4]. DMRT1 also maintains male gonadal sex: its loss, even in adults, can trigger sexual cell-fate reprogramming in which male Sertoli cells transdifferentiate into their female equivalents-granulosa cells-and testicular tissue reorganizes to a more ovarian morphology [5]. Here we use a conditional Dmrt1 transgene to show that Dmrt1 is not only necessary but also sufficient to specify male cell identity in the mouse gonad. DMRT1 expression in the ovary silenced the female sex-maintenance gene Foxl2 and reprogrammed juvenile and adult granulosa cells into Sertoli-like cells, triggering formation of structures resembling male seminiferous tubules. DMRT1 can silence Foxl2 even in the absence of the testis-determining genes Sox8 and Sox9. mRNA profiling found that DMRT1 activates many testicular genes and downregulates ovarian genes and single-cell RNA sequencing in transdifferentiating cells identified dynamically expressed candidate mediators of this process. Strongly upregulated genes were highly enriched on chromosome X, consistent with sexually antagonistic functions. This study provides an in vivo example of single-gene reprogramming of cell sexual identity. Our findings suggest a reconsideration of mechanisms involved in human disorders of sex development (DSDs) and empirically support evolutionary models in which loss or gain of Dmrt1 function promotes establishment of new vertebrate sex-determination systems.


Assuntos
Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Ovário/citologia , Ovário/metabolismo , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Transdiferenciação Celular , Feminino , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Ovário/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Diferenciação Sexual , Análise de Célula Única , Cromossomo X/genética
19.
Dev Cell ; 31(4): 385-7, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25458005

RESUMO

Maintaining cellular identity is crucial for homeostasis, and sexual fates of vertebrate testis and ovary cells require continual reinforcement. In this issue of Developmental Cell, Ma et al. (2014) provide insights into stem cell fate maintenance in Drosophila, finding that the JAK/STAT target chinmo prevents transformation of testis somatic stem cells into their ovarian counterparts.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Janus Quinases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição STAT/metabolismo , Processos de Determinação Sexual/fisiologia , Células-Tronco/citologia , Testículo/metabolismo , Animais , Masculino
20.
Cytogenet Genome Res ; 143(4): 251-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25227445

RESUMO

Evaluating homology between the sex chromosomes of different species is an important first step in deducing the origins and evolution of sex-determining mechanisms in a clade. Here, we describe the preparation of Z and W chromosome paints via chromosome microdissection from the Australian marbled gecko (Christinus marmoratus) and their subsequent use in evaluating sex chromosome homology with the ZW chromosomes of the Kwangsi gecko (Gekko hokouensis) from eastern Asia. We show that the ZW sex chromosomes of C. marmoratus and G. hokouensis are not homologous and represent independent origins of female heterogamety within the Gekkonidae. We also show that the C. marmoratus Z and W chromosomes are genetically similar to each other as revealed by C-banding, comparative genomic hybridization, and the reciprocal painting of Z and W chromosome probes. This implies that sex chromosomes in C. marmoratus are at an early stage of differentiation, suggesting a recent origin.


Assuntos
Lagartos/genética , Cromossomos Sexuais/genética , Animais , Células Cultivadas , Bandeamento Cromossômico , Hibridização Genômica Comparativa , Evolução Molecular , Feminino , Hibridização in Situ Fluorescente , Masculino , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA