Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Phys J C Part Fields ; 78(8): 671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174552

RESUMO

Vector-boson scattering processes are of great importance for the current run-II and future runs of the Large Hadron Collider. The presence of triple and quartic gauge couplings in the process gives access to the gauge sector of the Standard Model (SM) and possible new-physics contributions there. To test any new-physics hypothesis, sound knowledge of the SM contributions is necessary, with a precision which at least matches the experimental uncertainties of existing and forthcoming measurements. In this article we present a detailed study of the vector-boson scattering process with two positively-charged leptons and missing transverse momentum in the final state. In particular, we first carry out a systematic comparison of the various approximations that are usually performed for this kind of process against the complete calculation, at LO and NLO QCD accuracy. Such a study is performed both in the usual fiducial region used by experimental collaborations and in a more inclusive phase space, where the differences among the various approximations lead to more sizeable effects. Afterwards, we turn to predictions matched to parton showers, at LO and NLO: we show that on the one hand, the inclusion of NLO QCD corrections leads to more stable predictions, but on the other hand the details of the matching and of the parton-shower programs cause differences which are considerably larger than those observed at fixed order, even in the experimental fiducial region. We conclude with recommendations for experimental studies of vector-boson scattering processes.

2.
Eur Phys J C Part Fields ; 77(1): 34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28260980

RESUMO

We study Higgs boson production in association with a top quark and a W boson at the LHC. At NLO in QCD, tWH interferes with [Formula: see text] and a procedure to meaningfully separate the two processes needs to be employed. In order to define tWH production for both total rates and differential distributions, we consider the diagram removal and diagram subtraction techniques that have been previously proposed for treating intermediate resonances at NLO, in particular in the context of tW production. These techniques feature approximations that need to be carefully taken into account when theoretical predictions are compared to experimental measurements. To this aim, we first critically revisit the tW process, for which an extensive literature exists and where an analogous interference with [Formula: see text] production takes place. We then provide robust results for total and differential cross sections for tW and tWH at 13 TeV, also matching short-distance events to a parton shower. We formulate a reliable prescription to estimate the theoretical uncertainties, including those associated to the very definition of the process at NLO. Finally, we study the sensitivity to a non-Standard-Model relative phase between the Higgs couplings to the top quark and to the W boson in tWH production.

3.
Eur Phys J C Part Fields ; 75(6): 267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26120279

RESUMO

We present a detailed study of Higgs boson production in association with a single top quark at the LHC, at next-to-leading order accuracy in QCD. We consider total and differential cross sections, at the parton level as well as by matching short distance events to parton showers, for both t-channel and s-channel production. We provide predictions relevant for the LHC at 13 TeV together with a thorough evaluation of the residual uncertainties coming from scale variation, parton distributions, strong coupling constant and heavy quark masses. In addition, for t-channel production, we compare results as obtained in the 4-flavour and 5-flavour schemes, pinning down the most relevant differences between them. Finally, we study the sensitivity to a non-standard-model relative phase between the Higgs couplings to the top quark and to the weak bosons.

4.
Eur Phys J C Part Fields ; 74(1): 2710, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25814870

RESUMO

Vector-boson fusion and associated production at the LHC can provide key information on the strength and structure of the Higgs couplings to the Standard Model particles. Using an effective field theory approach, we study the effects of next-to-leading order (NLO) QCD corrections matched to a parton shower on selected observables for various spin-0 hypotheses. We find that inclusion of NLO corrections is needed to reduce the theoretical uncertainties on the total rates as well as to reliably predict the shapes of the distributions. Our results are obtained in a fully automatic way via FeynRules and MadGraph5_aMC@NLO.

5.
Eur Phys J C Part Fields ; 74(9): 3065, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25814915

RESUMO

At the LHC the CP properties of the top-quark Yukawa interaction can be probed through Higgs production in gluon fusion or in association with top quarks. We consider the possibility for both CP-even and CP-odd couplings to the top quark to be present, and study CP-sensitive observables at next-to-leading order (NLO) in QCD, including parton-shower effects. We show that the inclusion of NLO corrections sizeably reduces the theoretical uncertainties, and confirm that di-jet correlations in [Formula: see text] jet production through gluon fusion and correlations of the top-quark decay products in [Formula: see text] production can provide sensitive probes of the CP nature of the Higgs interactions.

6.
Phys Rev Lett ; 105(1): 011801, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20867435

RESUMO

We present the total cross sections at next-to-next-to-leading order in the strong coupling for Higgs boson production via weak-boson fusion. Our results are obtained via the structure function approach, which builds upon the approximate, though very accurate, factorization of the QCD corrections between the two quark lines. The theoretical uncertainty on the total cross sections at the LHC from higher order corrections and the parton distribution uncertainties are estimated at the 2% level each for a wide range of Higgs boson masses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA