Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(4): 114, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418710

RESUMO

Six lactic acid bacteria (LAB) isolated from Algerian sheep's milk, traditional butter, date palm sap and barley, which produce dextran, mannitol, oligosaccharides and vitamin B2 have been characterized. They were identified as Leuconostoc mesenteroides (A4X, Z36P, B12 and O9) and Liquorilactobacillus mali (BR201 and FR123). Their exopolysaccharides synthesized from sucrose by dextransucrase (Dsr) were characterized as dextrans with (1,6)-D-glucopyranose units in the main backbone and branched at positions O-4, O-2 and/or O-3, with D-glucopyranose units in the side chain. A4X was the best dextran producer (4.5 g/L), while the other strains synthesized 2.1-2.7 g/L. Zymograms revealed that L. mali strains have a single Dsr with a molecular weight (Mw) of ~ 145 kDa, while the Lc. mesenteroides possess one or two enzymes with 170-211 kDa Mw. As far as we know, this is the first detection of L. mali Dsr. Analysis of metabolic fluxes from sucrose revealed that the six LAB produced mannitol (~ 12 g/L). The co-addition of maltose-sucrose resulted in the production of panose (up to 37.53 mM), an oligosaccharide known for its prebiotic effect. A4X, Z36P and B12 showed dextranase hydrolytic enzymatic activity and were able to produce another trisaccharide, maltotriose, which is the first instance of a dextranase activity encoded by Lc. mesenteroides strains. Furthermore, B12 and O9 grew in the absence of riboflavin (vitamin B2) and synthesized this vitamin, in a defined medium at the level of ~ 220 µg/L. Therefore, these LAB, especially Lc. mesenteroides B12, are good candidates for the development of new fermented food biofortified with functional compounds.


Assuntos
Leuconostoc mesenteroides , Animais , Ovinos , Dextranos/metabolismo , Dextranase/química , Dextranase/metabolismo , Manitol/metabolismo , Mali , Glucosiltransferases/metabolismo , Oligossacarídeos/química , Sacarose/metabolismo , Vitaminas/metabolismo , Leuconostoc/metabolismo
2.
Front Microbiol ; 10: 959, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134012

RESUMO

Leuconostoc lactis AV1 strain isolated from a Tunisian avocado was characterized as a dextran producer. The promoter P dsrLL and the dsrLL gene encoding the DsrLL dextransucrase responsible for the dextran synthesis were transcriptionally fused to the mCherry coding gene generating the pRCR20 plasmid. Upon plasmid transfer, both AV1n and the dextran non-producing Leuconostoc mesenteroides CM70 became red due to expression of the mCherry from the P dsrLL-dsr-mrfp transcriptional fusion. Characterization of the polymers present in cultures supernatants revealed that the DsrLL encoded from pRCR20 in the recombinant bacteria was able to synthesize dextran. The production of dextran by the DsrLL in AV1n increased in response to low temperature, reaching 10-fold higher levels at 20°C than at 37°C (4.15 g/L versus 0.41 g/L). To analyze if this stress response includes activation at the transcriptional level and if it was only restricted to Leuconostoc, AV1n was transformed with plasmids carrying either the P dsrLL -mrfp fusion or the P dsrLS of Lactobacillus sakei MN1 fused to the mrfp gene, and the influence of temperature and carbon source on expression from the Dsr promoters was monitored by measurement of the mCherry levels. The overall expression analysis confirmed an induction of expression from P dsrLL upon growth at low temperature (20°C versus 30°C and 37°C) in the presence of sugars tested (sucrose, glucose, maltose, and fructose). In addition, the presence of sucrose, the substrate of Dsr, also resulted in activation of expression from P dsrLL . A different behavior was detected, when expression from P dsrLS was evaluated. Similar levels of fluorescence were observed irrespectively of the carbon source or temperature, besides a sequential decrease at 30°C and 20°C, when sucrose was present in the growth medium. In conclusion, the two types of regulation of expression of Dsr presented here revealed two different mechanisms for environmental adaptation of Leuconostoc and Lactobacillus that could be exploited for industrial applications.

3.
Carbohydr Polym ; 174: 646-657, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821115

RESUMO

Dextrans synthesised by three Leuconostoc mesenteroides strains, isolated from mammalian milks, were studied and compared with dextrans produced by Lc. mesenteroides and Lactobacillus sakei strains isolated from meat products. Size exclusion chromatography coupled with multiangle laser light scattering detection analysis demonstrated that the dextrans have molecular masses between 1.74×108Da and 4.41×108Da. Rheological analysis of aqueous solutions of the polymer revealed that all had a pseudoplastic behaviour under shear conditions and a random, and flexible, coil structure. The dextrans showed at shear zero a difference in viscosity, which increased as the concentration increased. Also, the purified dextrans were able to immunomodulate in vitro human macrophages, partially counteracting the inflammatory effect of Escherichia coli O111:B4 lipopolysaccharide. During prolonged incubation on a solid medium containing sucrose, dextran-producing bacteria showed two distinct phenotypes not related to the genus or species to which they belonged. Colonies of Lc. mesenteroides CM9 from milk and Lb. sakei MN1 from meat formed stable and compact mucoid colonies, whereas the colonies of the other three Leuconostoc strains became diffuse after 72h. This differential behaviour was also observed in the ability of the corresponding strains to bind to Caco-2 cells. Strains forming compact mucoid colonies showed a high level of adhesion when grown in the presence of glucose, which decreased in the presence of sucrose (the condition required for dextran synthesis). However no influence of the carbon source was detected for the adhesion ability of the other Lc. mesenteroides strains, which showed variable levels of binding to the enterocytes.


Assuntos
Dextranos/química , Leuconostoc/metabolismo , Animais , Aderência Bacteriana , Células CACO-2 , Dextranos/biossíntese , Humanos , Macrófagos/efeitos dos fármacos , Leite/microbiologia , Peso Molecular , Reologia
4.
Carbohydr Polym ; 168: 22-31, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28457443

RESUMO

In this work we have investigated two dextran-producing lactic acid bacteria, Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10, isolated from fermented meat products. These bacteria synthesise dextran when sucrose, but not glucose, is present in the growth medium. The influence of dextran on bacterial aggregation, adhesion and biofilm formation was investigated in cultures challenged with sucrose or glucose. For Lb. sakei MN1, the synthesis of the dextran drastically impaired the three processes; in contrast it had no effect on Lc. mesenteroides RTF10. Therefore, the influence of dextran on probiotic properties of Lb. sakei MN1 was tested in vivo using gnotobiotic zebrafish models. The bacterium efficiently colonised the fish gut and inhibited the killing activity of Vibrio anguillarum NB10[pOT11]. Furthermore, under conditions of dextran synthesis, the adhesion of Lb. sakei MN1 to the epithelial cells decreased, without greatly affecting its anti V. anguillarum activity.


Assuntos
Aderência Bacteriana , Biofilmes , Dextranos/biossíntese , Latilactobacillus sakei/metabolismo , Animais , Células Epiteliais/microbiologia , Fermentação , Alimentos Fermentados/microbiologia , Produtos da Carne/microbiologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA