Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 23(1): 265, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978393

RESUMO

BACKGROUND: Despite the globally reducing hospitalization rates and the much lower risks of Covid-19 mortality, accurate diagnosis of the infection stage and prediction of outcomes are clinically of interest. Advanced current technology can facilitate automating the process and help identifying those who are at higher risks of developing severe illness. This work explores and represents deep-learning-based schemes for predicting clinical outcomes in Covid-19 infected patients, using Visual Transformer and Convolutional Neural Networks (CNNs), fed with 3D data fusion of CT scan images and patients' clinical data. METHODS: We report on the efficiency of Video Swin Transformers and several CNN models fed with fusion datasets and CT scans only vs. a set of conventional classifiers fed with patients' clinical data only. A relatively large clinical dataset from 380 Covid-19 diagnosed patients was used to train/test the models. RESULTS: Results show that the 3D Video Swin Transformers fed with the fusion datasets of 64 sectional CT scans + 67 clinical labels outperformed all other approaches for predicting outcomes in Covid-19-infected patients amongst all techniques (i.e., TPR = 0.95, FPR = 0.40, F0.5 score = 0.82, AUC = 0.77, Kappa = 0.6). CONCLUSIONS: We demonstrate how the utility of our proposed novel 3D data fusion approach through concatenating CT scan images with patients' clinical data can remarkably improve the performance of the models in predicting Covid-19 infection outcomes. SIGNIFICANCE: Findings indicate possibilities of predicting the severity of outcome using patients' CT images and clinical data collected at the time of admission to hospital.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Hospitalização , Hospitais , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
2.
J Med Signals Sens ; 11(3): 159-168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34466395

RESUMO

BACKGROUND: Recently, magnetic resonance imaging (MRI) has become a useful tool for the early detection of heart failure. A vital step of this process is a valid measurement of the left ventricle's properties, which seriously depends on the accurate segmentation of the heart in captured images. Although various schemes have been tested for this segmentation so far, the latest proposed methods have used the concept of deep learning to estimate the range of the left ventricle in cardiac MRI images. While deep learning methods can lead to better results than their classical alternatives, but unfortunately, the gradient vanishing and exploding problems may hamper their efficiency for the accurate segmentation of the left ventricle in MRI heart images. METHODS: In this article, a new concept called residual learning is utilized to improve the performance of deep learning schemes against gradient vanishing problems. For this purpose, the Residual Network of Residual Network (i.e., Residual of Residual) substructure is utilized inside the main deep learning architecture (e.g., Unet), which provides more significant detection indexes. RESULTS AND CONCLUSION: The proposed method's performances and its alternatives were evaluated on Sunnybrook Cardiac Data as a reliable dataset in the left ventricle segmentation. The results show that the detection parameters are improved at least by 5%, 3.5%, 8.1%, and 11.4% compared to its deep alternatives in terms of Jaccard, Dice, precision, and false-positive rate indexes, respectively. These improvements were made when the recall parameter was reduced to a negligible value (i.e., approximately 1%). Overall, the proposed method can be used as a suitable tool for more accurate detection of the left ventricle in MRI images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA