Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798509

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) has a major impact on aging by regulation of proteostasis. It is well established that mTORC1 signaling is hyperactivated with aging and age-related diseases. Previous studies have shown that partial inhibition of mTOR signaling by rapamycin reverses the age-related decline in cardiac function and structure in old mice. However, the downstream signaling pathways involved in this protection against cardiac aging have not been established. TORC1 phosphorylates 4E-binding protein 1 (4EBP1) to promote the initiation of cap-dependent translation. The aim of this project is to examine the role of the mTORC1/4EBP1 axis in age-related cardiac dysfunction. We utilized a whole-body 4EBP1 KO mouse model, which mimics a hyperactive 4EBP1/eIF4E axis, to investigate the effects of hyperactive mTORC1/4EBP1 axis in cardiac aging. Echocardiographic measurements revealed that young 4EBP1 KO mice have no difference in cardiac function at baseline compared to WT mice. Interestingly, middle-aged (14-15-month-old) 4EBP1 KO mice show impaired diastolic function and myocardial performance compared to age-matched WT mice and their diastolic function and myocardial performance are at similar levels as 24-month-old WT mice, suggesting that 4EBP1 KO mice experience accelerated cardiac aging. Old 4EBP1 KO mice show further declines in systolic and diastolic function compared to middle-aged 4EBP1 KO mice and have worse systolic and diastolic function than age-matched old WT mice. Gene expression levels of heart failure markers are not different between 4EBP1 KO and WT mice at these advanced ages. However, ribosomal biogenesis and overall protein ubiquitination are significantly increased in 4EBP1 KO mice when compared to WT, which suggests dysregulated proteostasis. Together, these results show that a hyperactive 4EBP1/eIF4E axis accelerates cardiac aging, potentially by dysregulating proteostasis.

2.
Front Aging ; 3: 811436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821846

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a multi-organ disorder that represents about 50% of total heart failure (HF) cases and is the most common form of HF in the elderly. Because of its increasing prevalence caused by the aging population, high mortality and morbidity, and very limited therapeutic options, HFpEF is considered as one of the greatest unmet medical needs in cardiovascular medicine. Despite its complex pathophysiology, numerous preclinical models have been established in rodents and in large animals to study HFpEF pathophysiology. Although age and sex differences are well described in HFpEF population, there are knowledge gaps in sex- and age-specific differences in established preclinical models. In this review, we summarize various strategies that have been used to develop HFpEF models and discuss the knowledge gaps in sex and age differences in HFpEF.

3.
J Biomed Sci ; 28(1): 69, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635096

RESUMO

BACKGROUND: Overexpression of FGFR1 is observed in numerous tumors and therefore this receptor constitutes an attractive molecular target for selective cancer treatment with cytotoxic conjugates. The success of cancer therapy with cytotoxic conjugates largely relies on the precise recognition of a cancer-specific marker by a targeting molecule within the conjugate and its subsequent cellular internalization by receptor mediated endocytosis. We have recently demonstrated that efficiency and mechanism of FGFR1 internalization are governed by spatial distribution of the receptor in the plasma membrane, where clustering of FGFR1 into larger oligomers stimulated fast and highly efficient uptake of the receptor by simultaneous engagement of multiple endocytic routes. Based on these findings we aimed to develop a modular, self-assembly system for generation of oligomeric cytotoxic conjugates, capable of FGFR1 clustering, for targeting FGFR1-overproducing cancer cells. METHODS: Engineered FGF1 was used as FGFR1-recognition molecule and tailored for enhanced stability and site-specific attachment of the cytotoxic drug. Modified streptavidin, allowing for controlled oligomerization of FGF1 variant was used for self-assembly of well-defined FGF1 oligomers of different valency and oligomeric cytotoxic conjugate. Protein biochemistry methods were applied to obtain highly pure FGF1 oligomers and the oligomeric cytotoxic conjugate. Diverse biophysical, biochemical and cell biology tests were used to evaluate FGFR1 binding, internalization and the cytotoxicity of obtained oligomers. RESULTS: Developed multivalent FGF1 complexes are characterized by well-defined architecture, enhanced FGFR1 binding and improved cellular uptake. This successful strategy was applied to construct tetrameric cytotoxic conjugate targeting FGFR1-producing cancer cells. We have shown that enhanced affinity for the receptor and improved internalization result in a superior cytotoxicity of the tetrameric conjugate compared to the monomeric one. CONCLUSIONS: Our data implicate that oligomerization of the targeting molecules constitutes an attractive strategy for improvement of the cytotoxicity of conjugates recognizing cancer-specific biomarkers. Importantly, the presented approach can be easily adapted for other tumor markers.


Assuntos
Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
4.
Biomolecules ; 11(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439755

RESUMO

FGFRs are cell surface receptors that, when activated by specific FGFs ligands, transmit signals through the plasma membrane, regulating key cellular processes such as differentiation, division, motility, metabolism and death. We have recently shown that the modulation of the spatial distribution of FGFR1 at the cell surface constitutes an additional mechanism for fine-tuning cellular signaling. Depending on the multivalent, engineered ligand used, the clustering of FGFR1 into diverse supramolecular complexes enhances the efficiency and modifies the mechanism of receptor endocytosis, alters FGFR1 lifetime and modifies receptor signaling, ultimately determining cell fate. Here, we present a novel approach to generate multivalent FGFR1 ligands. We functionalized FGF1 for controlled oligomerization by developing N- and C-terminal fusions of FGF1 with the Fc fragment of human IgG1 (FGF1-Fc and Fc-FGF1). As oligomerization scaffolds, we employed GFPpolygons, engineered GFP variants capable of well-ordered multivalent display, fused to protein G to ensure binding of Fc fragment. The presented strategy allows efficient assembly of oligomeric FGFR1 ligands with up to twelve receptor binding sites. We show that multivalent FGFR1 ligands are biologically active and trigger receptor clustering on the cell surface. Importantly, the approach described in this study can be easily adapted to oligomerize alternative growth factors to control the activity of other cell surface receptors.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Imunoglobulina G/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Análise por Conglomerados , Endocitose , Endossomos/metabolismo , Proteínas de Fluorescência Verde/química , Humanos , Ligantes , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Fosforilação , Ligação Proteica , Domínios Proteicos , Engenharia de Proteínas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA