RESUMO
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.
Assuntos
Transdução de Sinais , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Humanos , Animais , Serina-Treonina Quinases TOR/metabolismoRESUMO
Significance: Traumatic spinal cord injury (SCI) causes significant disruption to neuronal, glial, vascular, and extracellular elements. The spinal cord extracellular matrix (ECM) comprises structural and communication proteins that are involved in reparative and regenerative processes after SCI. In the healthy spinal cord, the ECM helps maintain spinal cord homeostasis. After SCI, the damaged ECM limits plasticity and contributes to inflammation through the expression of damage-associated molecules such as proteoglycans. Recent Advances: Considerable insights have been gained by characterizing the origins of the gliotic and fibrotic scars, which not only reduce the spread of injury but also limit neuroregeneration. These properties likely limit the success of therapies used to treat patients with SCI. The ECM, which is a major contributor to the scars and normal physiological functions of the spinal cord, represents an exciting therapeutic target to enhance recovery post-SCI. Critical Issue: Various ECM-based preclinical therapies have been developed. These include disrupting scar components, inhibiting activity of ECM metalloproteinases, and maintaining iron homeostasis. Biomaterials have also been explored. However, the majority of these treatments have not experienced successful clinical translation. This could be due to the ECM and scars' polarizing roles. Future Directions: This review surveys the complexity involved in spinal ECM modifications, discusses new ECM-based combinatorial strategies, and explores the biomaterials evaluated in clinical trials, which hope to introduce new treatments that enhance recovery after SCI. These topics will incorporate oxidative species, which are both beneficial and harmful in reparative and regenerative processes after SCI, and not often assessed in pertinent literature. Antioxid. Redox Signal. 37, 184-207.
Assuntos
Cicatriz , Traumatismos da Medula Espinal , Materiais Biocompatíveis/metabolismo , Cicatriz/metabolismo , Matriz Extracelular/metabolismo , Humanos , Estresse Oxidativo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapiaRESUMO
Despite the debilitating consequences following traumatic spinal cord injury (SCI), there is a lack of safe and effective therapeutics in the clinic. The species-specific responses to SCI present major challenges and opportunities for the clinical translation of biomolecular and pharmacological interventions. Recent transcriptional analyses in preclinical SCI studies have provided a snapshot of the local SCI-induced molecular responses in different animal models. However, the variation in the pathogenesis of traumatic SCI across species is yet to be explored. This study aims to identify and characterize the common and inconsistent SCI-induced differentially expressed genes across species to identify potential therapeutic targets of translational relevance. A comprehensive search of open-source transcriptome datasets identified four cross-compatible microarray experiments in rats, mice, and salamanders. We observed consistent expressional changes in extracellular matrix components across the species. Conversely, salamanders showed downregulation of intracellular MAPK signaling compared to rodents. Additionally, sequence conservation and interactome analyses highlighted the well-preserved sequences of Fn1 and Jun with extensive protein-protein interaction networks. Lastly, in vivo immunohistochemical staining for fibronectin was used to validate the observed expressional pattern. These transcriptional changes in extracellular and MAPK pathways present potential therapeutic targets for traumatic SCI with promising translational relevance.
Assuntos
Sistema de Sinalização das MAP Quinases , Terapia de Alvo Molecular , Traumatismos da Medula Espinal/metabolismo , Ambystoma mexicanum , Animais , Modelos Animais de Doenças , Camundongos , Ratos , Traumatismos da Medula Espinal/terapiaRESUMO
Traumatic spinal cord injury (SCI) impairs neuronal function and introduces a complex cascade of secondary pathologies that limit recovery. Despite decades of preclinical and clinical research, there is a shortage of efficacious treatment options to modulate the secondary response to injury. Protein kinases are crucial signaling molecules that mediate the secondary SCI-induced cellular response and present promising therapeutic targets. The objective of this study was to examine the safety and efficacy of midostaurin-a clinically-approved multi-target protein kinase inhibitor-on cervical SCI pathogenesis. High-throughput analyses demonstrated that intraperitoneal midostaurin injection (25 mg/kg) in C6/7 injured Wistar rats altered the local inflammasome and downregulated adhesive and migratory genes at 24 h post-injury. Treated animals also exhibited enhanced recovery and restored coordination between forelimbs and hindlimbs after injury, indicating the synergistic impact of midostaurin and its dimethyl sulfoxide vehicle to improve functional recovery. Furthermore, histological analyses suggested improved tissue preservation and functionality in the treated animals during the chronic phase of injury. This study serves as a proof-of-concept experiment and demonstrates that systemic midostaurin administration is an effective strategy for mitigating cervical secondary SCI damage.
Assuntos
Medula Cervical , Fármacos Neuroprotetores/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Traumatismos da Medula Espinal , Estaurosporina/análogos & derivados , Animais , Medula Cervical/lesões , Medula Cervical/metabolismo , Medula Cervical/fisiopatologia , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/fisiopatologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Estaurosporina/farmacologiaRESUMO
BACKGROUND/INTRODUCTION: The neuroinflammatory response plays a major role in the secondary injury cascade after traumatic spinal cord injury (SCI). To date, systemic anti-inflammatory medications such as methylprednisolone sodium succinate (MPSS) have shown promise in SCI. However, systemic immunosuppression can have detrimental side effects. Therefore, immunomodulatory approaches including the use of human immunoglobulin G (hIgG) could represent an attractive alternative. While emerging preclinical data suggests that hIgG is neuroprotective after SCI, the optimal time window of administration and the mechanism of action remain incompletely understood. These knowledge gaps were the focus of this research study. METHODS: Female adult Wistar rats received a clip compression-contusion SCI at the C7/T1 level of the spinal cord. Injured rats were randomized, in a blinded manner, to receive a single intravenous bolus of hIgG (2 g/kg) or control buffer at 15 minutes (min), 1 hour (h) or 4 h post-SCI. At 24 h and 8 weeks post-SCI, molecular, histological and neurobehavioral analyses were undertaken. RESULTS: At all 3 administration time points, hIgG (2 g/kg) resulted in significantly better short-term and long-term outcomes as compared to control buffer. No significant differences were observed when comparing outcomes between the different time points of administration. At 24 h post-injury, hIgG (2 g/kg) administration enhanced the integrity of the blood spinal cord barrier (BSCB) by increasing expression of tight junction proteins and reducing inflammatory enzyme expression. Improvements in BSCB integrity were associated with reduced immune cell infiltration, lower amounts of albumin and Evans Blue in the injured spinal cord and greater expression of anti-inflammatory cytokines. Furthermore, hIgG (2 g/kg) increased expression of neutrophil chemoattractants in the spleen and sera. After hIgG (2 g/kg) treatment, there were more neutrophils in the spleen and fewer neutrophils in the blood. hIgG also co-localized with endothelial cell ligands that mediate neutrophil extravasation into the injured spinal cord. Importantly, short-term effects of delayed hIgG (2 g/kg) administration were associated with enhanced tissue and neuron preservation, as well as neurobehavioral and sensory recovery at 8 weeks post-SCI. DISCUSSION AND CONCLUSION: hIgG (2 g/kg) shows promise as a therapeutic approach for SCI. The anti-inflammatory effects mediated by hIgG (2 g/kg) in the injured spinal cord might be explained in twofold. First, hIgG might antagonize neutrophil infiltration into the spinal cord by co-localizing with endothelial cell ligands that mediate various steps in neutrophil extravasation. Second, hIgG could traffic neutrophils towards the spleen by increasing expression of neutrophil chemoattractants in the spleen and sera. Overall, we demonstrate that delayed administration of hIgG (2 g/kg) at 1 and 4-h post-injury enhances short-term and long-term benefits after SCI by modulating local and systemic neuroinflammatory cascades.
Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Vértebras Cervicais , Citocinas/efeitos dos fármacos , Imunoglobulinas Intravenosas/administração & dosagem , Fatores Imunológicos/administração & dosagem , Inflamação/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Animais , Barreira Hematoencefálica/metabolismo , Citocinas/metabolismo , Feminino , Imunoglobulinas Intravenosas/farmacologia , Fatores Imunológicos/farmacologia , Ratos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Fatores de TempoRESUMO
Traumatic spinal cord injury (SCI) impedes signal transmission by disrupting both the local neurons and their surrounding synaptic connections. Although the majority of SCI patients retain spared neural tissue at the injury site, they predominantly suffer from complete autonomic and sensorimotor dysfunction. While there have been significant advances in the characterization of the spared neural tissue following SCI, the functional role of injury-induced interneuronal plasticity remains elusive. In healthy individuals, spinal interneurons are responsible for relaying signals to coordinate both sympathetic and parasympathetic functions. However, the spontaneous synaptic loss following injury alters these intricate interneuronal networks in the spinal cord. Here, we propose the synaptopathy hypothesis of SCI based on recent findings regarding the maladaptive role of synaptic changes amongst the interneurons. These maladaptive consequences include circuit inactivation, neuropathic pain, spasticity, and autonomic dysreflexia. Recent preclinical advances have uncovered the therapeutic potential of spinal interneurons in activating the dormant relay circuits to restore sensorimotor function. This review will survey the diverse role of spinal interneurons in SCI pathogenesis as well as treatment strategies to target spinal interneurons.
RESUMO
Spinal cord injury (SCI) leads to chronic and multifaceted disability, which severely impacts the physical and mental health as well as the socio-economic status of affected individuals. Permanent disabilities following SCI result from the failure of injured neurons to regenerate and rebuild functional connections with their original targets. Inhibitory factors present in the SCI microenvironment and the poor intrinsic regenerative capacity of adult spinal cord neurons are obstacles for regeneration and functional recovery. Considerable progress has been made in recent years in developing cell and molecular approaches to enable the regeneration of damaged spinal cord tissue. In this review, we highlight several potent cell-based approaches and genetic manipulation strategies (gene therapy) that are being investigated to reconstruct damaged or lost spinal neural circuits and explore emerging novel combinatorial approaches for enhancing recovery from SCI.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Traumatismos da Medula Espinal/terapia , Humanos , Neurônios , Recuperação de Função FisiológicaRESUMO
Cerebral palsy (CP) encompasses a group of non-progressive brain disorders that are often acquired through perinatal hypoxic-ischemic (HI) brain injury. Injury leads to a cascade of cell death events, resulting in lifetime motor and cognitive deficits. There are currently no treatments that can repair the resulting brain damage and improve functional outcomes. To date, preclinical research using neural precursor cell (NPC) transplantation as a therapy for HI brain injury has shown promise. To translate this treatment to the clinic, it is essential that human-derived NPCs also be tested in animal models, however, a major limitation is the high risk of xenograft rejection. A solution is to transplant the cells into immune-deficient rodents, but there are currently no models of HI brain injury established in such a cohort of animals. Here, we demonstrate that a model of HI brain injury can be generated in immune-deficient Prkdc knockout (KO) rats. Long-term deficits in sensorimotor function were similar between KO and wildtype (WT) rats. Interestingly, some aspects of the injury were more severe in KO rats. Additionally, human induced pluripotent stem cell derived (hiPSC)-NPCs had higher survival at 10 weeks post-transplant in KO rats when compared to their WT counterparts. This work establishes a reliable model of neonatal HI brain injury in Prkdc KO rats that will allow for future transplantation, survival, and long-term evaluation of the safety and efficacy of hiPSC-NPCs for neonatal brain damage. This model will enable critical preclinical translational research using human NPCs.
Assuntos
Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Neurais/transplante , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Sobrevivência Celular , Proteína Quinase Ativada por DNA/genética , Gliose/patologia , Gliose/terapia , Humanos , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Neurais/patologia , Proteínas Nucleares/genética , Distribuição Aleatória , Ratos Long-Evans , Ratos Transgênicos , Imunodeficiência Combinada Severa/genética , Transplante HeterólogoRESUMO
While over half of all spinal cord injuries (SCIs) occur in the cervical region, the majority of preclinical studies have focused on models of thoracic injury. However, these two levels are anatomically distinct-with the cervical region possessing a greater vascular supply, grey-white matter ratio and sympathetic outflow relative to the thoracic region. As such, there exists a significant knowledge gap in the secondary pathology at these levels following SCI. In this study, we characterized the systemic plasma markers of inflammation over time (1, 3, 7, 14, 56 days post-SCI) after moderate-severe, clip-compression cervical and thoracic SCI in a rat model. Using high-throughput ELISA panels, we observed a clear level-specific difference in plasma levels of VEGF, leptin, IP10, IL18, GCSF, and fractalkine. Overall, cervical SCI had reduced expression of both pro- and anti-inflammatory proteins relative to thoracic SCI, likely due to sympathetic dysregulation associated with higher level SCIs. However, contrary to the literature, we did not observe level-dependent splenic atrophy with our incomplete SCI model. This is the first study to compare the systemic plasma-level changes following cervical and thoracic SCI using level-matched and time-matched controls. The results of this study provide the first evidence in support of level-targeted intervention and also challenge the phenomenon of high SCI-induced splenic atrophy in incomplete SCI models.