RESUMO
Loss of the tumor suppressive activity of the protein phosphatase 2A (PP2A) is associated with cancer, but the underlying molecular mechanisms are unclear. PP2A holoenzyme comprises a heterodimeric core, a scaffolding A subunit and a catalytic C subunit, and one of over 20 distinct substrate-directing regulatory B subunits. Methylation of the C subunit regulates PP2A heterotrimerization, affecting B subunit binding and substrate specificity. Here, we report that the leucine carboxy methyltransferase (LCMT1), which methylates the L309 residue of the C subunit, acts as a suppressor of androgen receptor (AR) addicted prostate cancer (PCa). Decreased methyl-PP2A-C levels in prostate tumors is associated with biochemical recurrence and metastasis. Silencing LCMT1 increases AR activity and promotes castration-resistant prostate cancer growth. LCMT1-dependent methyl-sensitive AB56αCme heterotrimers target AR and its critical coactivator MED1 for dephosphorylation, resulting in the eviction of the AR-MED1 complex from chromatin and loss of target gene expression. Mechanistically, LCMT1 is regulated by S6K1-mediated phosphorylation-induced degradation requiring the ß-TRCP, leading to acquired resistance to anti-androgens. Finally, feedforward stabilization of LCMT1 by small molecule activator of phosphatase (SMAP) results in attenuation of AR-signaling and tumor growth inhibition in anti-androgen refractory PCa. These findings highlight methyl-PP2A-C as a prognostic marker and that the loss of LCMT1 is a major determinant in AR-addicted PCa, suggesting therapeutic potential for AR degraders or PP2A modulators in prostate cancer treatment.
Assuntos
Neoplasias da Próstata , Proteína Fosfatase 2 , Humanos , Masculino , Antagonistas de Androgênios , Leucina , Metiltransferases , Próstata , Neoplasias da Próstata/genética , Proteína Fosfatase 2/genéticaRESUMO
Targeted therapies such as venetoclax (VEN) (Bcl-2 inhibitor) have revolutionized the treatment of chronic lymphocytic leukemia (CLL). We previously reported that persister CLL cells in treated patients overexpress multiple antiapoptotic proteins and display resistance to proapoptotic agents. Here, we demonstrated that multidrug-resistant CLL cells in vivo exhibited apoptosis restriction at a pre-mitochondrial level due to insufficient activation of the Bax and Bak (Bax/Bak) proteins. Co-immunoprecipitation analyses with selective BH domain antagonists revealed that the pleiotropic proapoptotic protein (Bim) was prevented from activating Bax/Bak by "switching" interactions to other upregulated antiapoptotic proteins (Mcl-1, Bcl-xL, Bcl-2). Hence, treatments that bypass Bax/Bak restriction are required to deplete these resistant cells in patients. Protein phosphatase 2A (PP2A) contributes to oncogenesis and treatment resistance. We observed that small-molecule activator of PP2A (SMAP) induced cytotoxicity in multiple cancer cell lines and CLL samples, including multidrug-resistant leukemia and lymphoma cells. The SMAP (DT-061) activated apoptosis in multidrug-resistant CLL cells through induction of mitochondrial permeability transition pores, independent of Bax/Bak. DT-061 inhibited the growth of wild-type and Bax/Bak double-knockout, multidrug-resistant CLL cells in a xenograft mouse model. Collectively, we discovered multidrug-resistant CLL cells in patients and validated a pharmacologically tractable pathway to deplete this reservoir.
Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Animais , Camundongos , Proteína X Associada a bcl-2/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteína Fosfatase 2/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Resistência a Múltiplos MedicamentosRESUMO
Uterine serous carcinoma (USC) is a highly aggressive endometrial cancer subtype with limited therapeutic options and a lack of targeted therapies. While mutations to PPP2R1A, which encodes the predominant protein phosphatase 2A (PP2A) scaffolding protein Aα, occur in 30% to 40% of USC cases, the clinical actionability of these mutations has not been studied. Using a high-throughput screening approach, we showed that mutations in Aα results in synthetic lethality following treatment with inhibitors of ribonucleotide reductase (RNR). In vivo, multiple models of Aα mutant uterine serous tumors were sensitive to clofarabine, an RNR inhibitor (RNRi). Aα-mutant cells displayed impaired checkpoint signaling upon RNRi treatment and subsequently accumulated more DNA damage than wild-type (WT) cells. Consistently, inhibition of PP2A activity using LB-100, a catalytic inhibitor, sensitized WT USC cells to RNRi. Analysis of The Cancer Genome Atlas data indicated that inactivation of PP2A, through loss of PP2A subunit expression, was prevalent in USC, with 88% of patients with USC harboring loss of at least one PP2A gene. In contrast, loss of PP2A subunit expression was rare in uterine endometrioid carcinomas. While RNRi are not routinely used for uterine cancers, a retrospective analysis of patients treated with gemcitabine as a second- or later-line therapy revealed a trend for improved outcomes in patients with USC treated with RNRi gemcitabine compared with patients with endometrioid histology. Overall, our data provide experimental evidence to support the use of ribonucleotide reductase inhibitors for the treatment of USC. SIGNIFICANCE: A drug repurposing screen identifies synthetic lethal interactions in PP2A-deficient uterine serous carcinoma, providing potential therapeutic avenues for treating this deadly endometrial cancer.
Assuntos
Cistadenocarcinoma Seroso/genética , Proteína Fosfatase 2/genética , Ribonucleotídeo Redutases/genética , Mutações Sintéticas Letais/genética , Neoplasias Uterinas/genética , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Clofarabina/farmacologia , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteína Fosfatase 2/metabolismo , Ratos Sprague-Dawley , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/metabolismo , Mutações Sintéticas Letais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Embryonic ectoderm development (EED) is a promising therapeutic target for human cancers and other diseases. We report herein the discovery of exceptionally potent and efficacious EED inhibitors. By conformational restriction of a previously reported EED inhibitor, we obtained a potent lead compound. Further optimization of the lead yielded exceptionally potent EED inhibitors. The best compound EEDi-5273 binds to EED with an IC50 value of 0.2 nM and inhibits the KARPAS422 cell growth with an IC50 value of 1.2 nM. It demonstrates an excellent PK and ADME profile, and its oral administration leads to complete and persistent tumor regression in the KARPAS422 xenograft model with no signs of toxicity. Co-crystal structures of two potent EED inhibitors with EED provide a solid structural basis for their high-affinity binding. EEDi-5273 is a promising EED inhibitor for further advanced preclinical development for the treatment of human cancer and other human diseases.
Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Administração Oral , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/patologia , Relação Estrutura-AtividadeRESUMO
Inhibition of embryonic ectoderm development (EED) is a new cancer therapeutic strategy. Herein, we report our discovery of EEDi-5285 as an exceptionally potent, efficacious, and orally active EED inhibitor. EEDi-5285 binds to the EED protein with an IC50 value of 0.2 nM and inhibits cell growth with IC50 values of 20 pM and 0.5 nM in the Pfeiffer and KARPAS422 lymphoma cell lines, respectively, carrying an EZH2 mutation. EEDi-5285 is approximately 100 times more potent than EED226 in binding to EED and >300 times more potent than EED226 in inhibition of cell growth in the KARPAS422 cell line. EEDi-5285 has excellent pharmacokinetics and achieves complete and durable tumor regression in the KARPAS422 xenograft model in mice with oral administration. The cocrystal structure of EEDi-5285 in a complex with EED defines the precise structural basis for their high binding affinity. EEDi-5285 is the most potent and efficacious EED inhibitor reported to date.