RESUMO
BACKGROUND: The use of Rhesus macaques in vision research is crucial due to their visual system's similarity to humans. While invasive techniques have been the norm, there has been a shift towards non-invasive methods, such as facemasks and head molds, to enhance animal welfare and address ethical concerns. NEW METHOD: We present a non-invasive, 3D-printed chinrest with infrared sensors, adapted from canine research, allowing for accurate eye movement measurements and voluntary animal participation in experiments. RESULTS: The chinrest method showed a 16% and 28% increase in average trial numbers for Monkey 1 and Monkey 2, respectively, compared to the traditional headpost method. The engagement was high, with monkeys performing over 500 trials per session and initiating a new trial after an average intertrial interval of approximately 1â¯second. The hit rate improved by about 10% for Monkey 1 in the chinrest condition, and the fixation precision, measured by the standard deviation of gaze positions, was significantly better in the chinrest condition, with Monkey 1 showing a reduction in fixation imprecision from 0.26° to 0.17° in the X-axis. COMPARISON WITH EXISTING METHODS: The chinrest approach showed significant improvements in trial engagement and reduction in aborted trials due to fixation breaks, indicating less stress and potentially improved data quality compared to previous non-invasive methods. CONCLUSIONS: The chinrest method offers a significant advancement in primate cognitive testing by allowing for precise data collection while addressing animal welfare concerns, possibly leading to better scientific outcomes and a paradigm shift in primate research methodologies.