Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiat Prot Dosimetry ; 177(1-2): 53-56, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036690

RESUMO

The activity size distribution of the Equilibrium-Equivalent Concentration (EER) of 222Rn is one of the most important parameters for the estimation of radiation dose by inhalation of radon decay products. A series of measurements of the EER activity size distribution were performed by the screen diffusion battery in Radon-Aerosol chamber (10 m3) at the National Institute for Nuclear, Chemical, and Biological Protection (SUJCHBO). These measurements were performed at different levels of radon concentration. For this study, the Graded Screen Array Diffusion Battery (GSA DB), developed by the SUJCHBO (based on Earl Knutson and Robert F Holub design), consists of 10 screens and backup filter used to collect all particles that penetrated the screens. The measuring range of this GSA DB allows measuring the radioactive nanoaerosols in the size range from 0.5 to 100 nm. The Earl Knutson algorithm was used for EER activity size distribution evaluation. The results of EER activity size distribution were subsequently compared with the aerosol particle size distribution measured by Scanning Mobility Particle Sizer Spectrometer (SMPS 3936 N, TSI Inc., MN, USA).


Assuntos
Aerossóis/análise , Poluentes Radioativos do Ar/análise , Tamanho da Partícula , Monitoramento de Radiação/instrumentação , Produtos de Decaimento de Radônio/análise , Radônio/análise , Doses de Radiação
2.
Indoor Air ; 27(6): 1201-1212, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28378912

RESUMO

The study investigated the separate and combined effects of ventilation rate, free convection flow produced by a thermal manikin, and the presence of objects on the distribution of tracer gas and particles in indoor air. The concentration of aerosol particles and tracer gas was measured in a test room with mixing ventilation. Three layouts were arranged: an empty room, an office room with an occupant sitting in front of a table, and a single-bed hospital room. The room occupant was simulated by a thermal manikin. Monodisperse particles of three sizes (0.07, 0.7, and 3.5 µm) and nitrous oxide tracer gas were generated simultaneously at the same location in the room. The particles and gas concentrations were measured in the bulk room air, in the breathing zone of the manikin, and in the exhaust air. Within the breathing zone of the sitting occupant, the tracer gas emerged as reliable predictor for the exposure to all different-sized test particles. A change in the ventilation rate did not affect the difference in concentration distribution between tracer gas and larger particle sizes. Increasing the room surface area did not influence the similarity in the dispersion of the aerosol particles and the tracer gas.


Assuntos
Aerossóis/análise , Poluição do Ar em Ambientes Fechados , Gases/análise , Ventilação , Movimentos do Ar , Manequins
3.
Occup Environ Med ; 73(2): 110-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26644454

RESUMO

OBJECTIVE: The use of nanotechnology is growing enormously and occupational physicians have an increasing interest in evaluating potential hazards and finding biomarkers of effect in workers exposed to nanoparticles. METHODS: A study was carried out with 36 workers exposed to (nano)TiO2 pigment and 45 controls. Condensate (EBC) titanium and markers of oxidation of nucleic acids (including 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU)) and proteins (such as o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr) and 3-nitrotyrosine (3-NOTyr)) were analysed from samples of their exhaled breath. RESULTS: In the production workshops, the median total mass 2012 and 2013 TiO2 concentrations were 0.65 and 0.40 mg/m(3), respectively. The median numbers of concentrations measured by the scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) were 1.98 × 10(4) and 2.32 × 10(4) particles/cm(3), respectively; and about 80% of those particles were smaller than 100 nm in diameter. In the research workspace, lower aerosol concentrations (0.16 mg/m(3) and 1.32 × 10(4) particles/cm(3)) were found. Titanium in the EBC was significantly higher in production workers (p<0.001) than in research workers and unexposed controls. Accordingly, most EBC oxidative stress markers, including in the preshift samples, were higher in production workers than in the two other groups. Multiple regression analysis confirmed an association between the production of TiO2 and the levels of studied biomarkers. CONCLUSIONS: The concentration of titanium in EBC may serve as a direct exposure marker in workers producing TiO2 pigment; the markers of oxidative stress reflect the local biological effect of (nano)TiO2 in the respiratory tract of the exposed workers.


Assuntos
Nanopartículas/efeitos adversos , Ácidos Nucleicos/metabolismo , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/efeitos adversos , Proteínas/metabolismo , Titânio/efeitos adversos , Adulto , Biomarcadores/metabolismo , Testes Respiratórios , Dano ao DNA , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Tamanho da Partícula , Trabalho , Adulto Jovem
4.
Sci Total Environ ; 437: 348-62, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22954654

RESUMO

Ambient aerosol particles dried using a diffusional aerosol dryer were sampled using a 7-stage modified Berner low pressure impactor with a back-up filter during the heating and non-heating season campaigns in 2008. The samples were analyzed for water-soluble ions and water-soluble organic carbon. Because of the drying, the aerosol size distribution was not influenced by the daily variability of ambient relative humidity. The results summarize the observations from campaigns in both the heating (11 sampling days) and non-heating (10 sampling days) seasons. The aerosols sampled on individual days were classified based on the connected air mass back trajectories into three classes: sea-influenced aerosol (SIA), continental aerosol (CA) and mixed aerosol (MA) for samples of intermediate origin. The differences between CA and SIA were substantial both when looking at the normalized mass size distributions of the particulate matter (PM) and of the individual species and when taking into account the absolute concentrations in the fine and coarse size fractions. The main differences were found in the normalized mass size distributions of the PM and of the sea-salt related ions.


Assuntos
Poluentes Atmosféricos/análise , Tamanho da Partícula , Material Particulado/análise , Aerossóis , República Tcheca , Monitoramento Ambiental , Calefação , Humanos , Estações do Ano
5.
Sci Total Environ ; 433: 418-26, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22819892

RESUMO

Number size distributions of atmospheric aerosol particles in the mobility diameter range from 10 to 1000 nm were determined in Budapest, Prague and Vienna for a one-year-long period. Particle number concentrations in various size fractions, their diurnal and seasonal variations, mean size distributions and some properties of new particle formation events were derived and compared. Yearly median particle number concentrations for Budapest, Prague and Vienna were 10.6×10(3), 7.3×10(3) and 8.0×10(3) cm(-3). Differences were linked to the different pollution levels of the cities, and to diverse measurement environments and local conditions. Mean contributions of ultrafine particles (particles with a mobility diameter <100 nm) to the total number concentration were 80%, 84% and 74% for Budapest, Prague and Vienna, thus these particles represent an overwhelming share of all particles in each city. Seasonal variation of particle number concentrations was not obvious. Diurnal variations of particles with a diameter between 100 and 1000 nm (N(100-1000)) exhibited similar shape for the cities, which was related to the time-activity pattern of inhabitants and regional influences. The structure of the diurnal variation for ultrafine particles was also similar. It contained a huge morning peak in each city which was explained by emissions from vehicular traffic. The second peak was shifted from afternoon rush hours to late evenings as a result of the daily cycling in meteorological parameters. The character of the measurement site also influenced the diurnal variation. Diurnal variation of the mean ratio of ultrafine particles to N(100-1000) clearly revealed the presence and importance of new particle formation and subsequent growth in urban environments. Nucleation frequencies in Budapest and Prague were 27% and 23%, respectively on a yearly time scale. They showed a minimum in winter for both places, while the largest nucleation activity was observed in spring for Budapest, and in summer for Prague.

6.
J Chem Phys ; 129(5): 054503, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18698910

RESUMO

In order to evaluate the experimental data from laminar flow diffusion chamber (LFDC) experiments on homogeneous nucleation, an extensive postmeasurement computational analysis is required. The present work investigates the influence of the used computational methodology on the derived nucleation curves. To this end a reanalysis is made of previous LFDC experiments of 1-butanol nucleation in helium [D. Brus et al., J. Chem. Phys. 122, 214506 (2005)] using two different methods. The first method is based on single fluid heat and vapor transport in the carrier gas ignoring the aerosol processes, as commonly made in LFDC data evaluations. The second method is more comprehensive as is based on multidimensional computational fluid-particle dynamics. The calculations are made under the usual simplification of one-way coupling between fluid flow and particles, which is a valid approximation in most practical aerosols, while full aerosol dynamical effects are accommodated. Similar results were produced by the two methods. This finding corroborates the usual practice of omitting aerosol calculations in LFDC experimental data evaluation.

7.
J Chem Phys ; 128(13): 134312, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18397069

RESUMO

The influence of total pressure and kind of carrier gas on homogeneous nucleation rates of 1-pentanol was investigated using experimental method of laminar flow diffusion chamber in this study. Two different carrier gases (helium and argon) were used in the total pressure range from 50 to 400 kPa. Nucleation temperatures ranged from 265 to 290 K for 1-pentanol-helium and from 265 to 285 K for 1-pentanol-argon. Nucleation rates varied between 10(1) and 10(6) cm(-3) s(-1) for 1-pentanol-helium and between 10(2) and 10(5) cm(-3) s(-1) for 1-pentanol-argon. Both positive and slight negative pressure effects were observed depending on temperature and carrier gas. The trend of pressure effect was found similar for both carrier gases. Error analysis on thermodynamic properties was conducted, and the lowering of surface tension due to adsorption of argon on nucleated droplets was estimated. A quantitative overview of pressure effect is provided.

8.
Radiat Prot Dosimetry ; 130(1): 34-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18397926

RESUMO

The dose from radon and its progeny remains a frequently discussed problem. ICRP 65 provides a commonly used methodology to calculate the dose from radon. Our work focuses on a cave environment and on assessing the doses in public open caves. The differences in conditions (aerosol size distribution, humidity, radon and its progeny ratio, etc.) are described by the so-called cave factor j. The cave factor is used to correct the dose for workers which is calculated using the ICRP 65 recommendation. In this work, the authors have brought together measured data of aerosol size distribution, unattached and attached fraction activity, and have calculated the so-called cave factor for the Bozkov dolomite cave environment. The dose conversion factors based on measured data and used for evaluating the cave factor were calculated by LUDEP software, which implements HRTM ICRP66.


Assuntos
Carbonato de Cálcio/química , Ecossistema , Magnésio/química , Exposição Ocupacional/análise , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Radônio/análise , República Tcheca , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA