Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536464

RESUMO

BACKGROUND: Accurate mortality risk quantification is crucial for the management of hepatocellular carcinoma (HCC); however, most scoring systems are subjective. PURPOSE: To develop and independently validate a machine learning mortality risk quantification method for HCC patients using standard-of-care clinical data and liver radiomics on baseline magnetic resonance imaging (MRI). METHODS: This retrospective study included all patients with multiphasic contrast-enhanced MRI at the time of diagnosis treated at our institution. Patients were censored at their last date of follow-up, end-of-observation, or liver transplantation date. The data were randomly sampled into independent cohorts, with 85% for development and 15% for independent validation. An automated liver segmentation framework was adopted for radiomic feature extraction. A random survival forest combined clinical and radiomic variables to predict overall survival (OS), and performance was evaluated using Harrell's C-index. RESULTS: A total of 555 treatment-naïve HCC patients (mean age, 63.8 years ± 8.9 [standard deviation]; 118 females) with MRI at the time of diagnosis were included, of which 287 (51.7%) died after a median time of 14.40 (interquartile range, 22.23) months, and had median followed up of 32.47 (interquartile range, 61.5) months. The developed risk prediction framework required 1.11 min on average and yielded C-indices of 0.8503 and 0.8234 in the development and independent validation cohorts, respectively, outperforming conventional clinical staging systems. Predicted risk scores were significantly associated with OS (p < .00001 in both cohorts). CONCLUSIONS: Machine learning reliably, rapidly, and reproducibly predicts mortality risk in patients with hepatocellular carcinoma from data routinely acquired in clinical practice. CLINICAL RELEVANCE STATEMENT: Precision mortality risk prediction using routinely available standard-of-care clinical data and automated MRI radiomic features could enable personalized follow-up strategies, guide management decisions, and improve clinical workflow efficiency in tumor boards. KEY POINTS: • Machine learning enables hepatocellular carcinoma mortality risk prediction using standard-of-care clinical data and automated radiomic features from multiphasic contrast-enhanced MRI. • Automated mortality risk prediction achieved state-of-the-art performances for mortality risk quantification and outperformed conventional clinical staging systems. • Patients were stratified into low, intermediate, and high-risk groups with significantly different survival times, generalizable to an independent evaluation cohort.

2.
Eur Radiol ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217704

RESUMO

OBJECTIVES: To develop and evaluate a deep convolutional neural network (DCNN) for automated liver segmentation, volumetry, and radiomic feature extraction on contrast-enhanced portal venous phase magnetic resonance imaging (MRI). MATERIALS AND METHODS: This retrospective study included hepatocellular carcinoma patients from an institutional database with portal venous MRI. After manual segmentation, the data was randomly split into independent training, validation, and internal testing sets. From a collaborating institution, de-identified scans were used for external testing. The public LiverHccSeg dataset was used for further external validation. A 3D DCNN was trained to automatically segment the liver. Segmentation accuracy was quantified by the Dice similarity coefficient (DSC) with respect to manual segmentation. A Mann-Whitney U test was used to compare the internal and external test sets. Agreement of volumetry and radiomic features was assessed using the intraclass correlation coefficient (ICC). RESULTS: In total, 470 patients met the inclusion criteria (63.9±8.2 years; 376 males) and 20 patients were used for external validation (41±12 years; 13 males). DSC segmentation accuracy of the DCNN was similarly high between the internal (0.97±0.01) and external (0.96±0.03) test sets (p=0.28) and demonstrated robust segmentation performance on public testing (0.93±0.03). Agreement of liver volumetry was satisfactory in the internal (ICC, 0.99), external (ICC, 0.97), and public (ICC, 0.85) test sets. Radiomic features demonstrated excellent agreement in the internal (mean ICC, 0.98±0.04), external (mean ICC, 0.94±0.10), and public (mean ICC, 0.91±0.09) datasets. CONCLUSION: Automated liver segmentation yields robust and generalizable segmentation performance on MRI data and can be used for volumetry and radiomic feature extraction. CLINICAL RELEVANCE STATEMENT: Liver volumetry, anatomic localization, and extraction of quantitative imaging biomarkers require accurate segmentation, but manual segmentation is time-consuming. A deep convolutional neural network demonstrates fast and accurate segmentation performance on T1-weighted portal venous MRI. KEY POINTS: • This deep convolutional neural network yields robust and generalizable liver segmentation performance on internal, external, and public testing data. • Automated liver volumetry demonstrated excellent agreement with manual volumetry. • Automated liver segmentations can be used for robust and reproducible radiomic feature extraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA