Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 35(12): 1485-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224527

RESUMO

Fragile X syndrome (FXS) is the most frequent cause of inherited intellectual disability and autism. It is caused by the absence of the fragile X mental retardation 1 (FMR1) gene product, fragile X mental retardation protein (FMRP), an RNA-binding protein involved in the regulation of translation of a subset of brain mRNAs. In Fmr1 knockout mice, the absence of FMRP results in elevated protein synthesis in the brain as well as increased signaling of many translational regulators. Whether protein synthesis is also dysregulated in FXS patients is not firmly established. Here, we demonstrate that fibroblasts from FXS patients have significantly elevated rates of basal protein synthesis along with increased levels of phosphorylated mechanistic target of rapamycin (p-mTOR), phosphorylated extracellular signal regulated kinase 1/2, and phosphorylated p70 ribosomal S6 kinase 1 (p-S6K1). The treatment with small molecules that inhibit S6K1 and a known FMRP target, phosphoinositide 3-kinase (PI3K) catalytic subunit p110ß, lowered the rates of protein synthesis in both control and patient fibroblasts. Our data thus demonstrate that fibroblasts from FXS patients may be a useful in vitro model to test the efficacy and toxicity of potential therapeutics prior to clinical trials, as well as for drug screening and designing personalized treatment approaches.


Assuntos
Biomarcadores/metabolismo , Síndrome do Cromossomo X Frágil/genética , Animais , Estudos de Casos e Controles , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Humanos , Leucina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas Quinases S6 Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA