Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(2): e4874, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100250

RESUMO

Several essential cellular metabolites, such as enzyme cofactors, contain sulfur atoms and their biosynthesis requires specific thiolation enzymes. LarE is an ATP-dependent sulfur insertase, which catalyzes the sequential conversion of the two carboxylate groups of the precursor of the lactate racemase cofactor into thiocarboxylates. Two types of LarE enzymes are known, one that uses a catalytic cysteine as a sacrificial sulfur donor, and the other one that uses a [4Fe-4S] cluster as a cofactor. Only the crystal structure of LarE from Lactobacillus plantarum (LpLarE) from the first class has been solved. We report here the crystal structure of LarE from Methanococcus maripaludis (MmLarE), belonging to the second class, in the cluster-free (apo-) and cluster-bound (holo-) forms. The structure of holo-MmLarE shows that the [4Fe-4S] cluster is chelated by three cysteines only, leaving an open coordination site on one Fe atom. Moreover, the fourth nonprotein-bonded iron atom was able to bind an anionic ligand such as a phosphate group or a chloride ion. Together with the spectroscopic analysis of holo-MmLarE and the previously reported biochemical investigations of holo-LarE from Thermotoga maritima, these crystal structures support the hypothesis of a reaction mechanism, in which the [4Fe-4S] cluster binds a hydrogenosulfide ligand in place of the chloride anion, thus generating a [4Fe-5S] intermediate, and transfers it to the substrate, as in the case of [4Fe-4S]-dependent tRNA thiolation enzymes.


Assuntos
Cloretos , Proteínas Ferro-Enxofre , Cloretos/metabolismo , Ligantes , Cisteína/química , Catálise , Enxofre/química , Enxofre/metabolismo , Proteínas Ferro-Enxofre/química
2.
Biomolecules ; 12(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35204772

RESUMO

Size Exclusion Chromatography coupled with Multi-Angle Light Scattering (SEC-MALS) is a technique that determines the absolute molar mass (molecular weight) of macromolecules in solution, such as proteins or polymers, by detecting their light scattering intensity. Because SEC-MALS does not rely on the assumption of the globular state of the analyte and the calibration of standards, the molar mass can be obtained for proteins of any shape, as well as for intrinsically disordered proteins and aggregates. Yet, corrections need to be made for samples that absorb light at the wavelength of the MALS laser, such as iron-sulfur [Fe-S] cluster-containing proteins. We analyze several examples of [2Fe-2S] and [4Fe-4S] cluster-containing proteins, for which various corrections were applied to determine the absolute molar mass of both the apo- and holo-forms. Importantly, the determination of the absolute molar mass of the [2Fe-2S]-containing holo-NEET proteins allowed us to ascertain a change in the oligomerization state upon cluster binding and, thus, to highlight one essential function of the cluster.


Assuntos
Luz , Proteínas , Cromatografia em Gel , Peso Molecular , Proteínas/química , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA