Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 365(6453): 583-587, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395781

RESUMO

Studies of early human settlement in alpine environments provide insights into human physiological, genetic, and cultural adaptation potentials. Although Late and even Middle Pleistocene human presence has been recently documented on the Tibetan Plateau, little is known regarding the nature and context of early persistent human settlement in high elevations. Here, we report the earliest evidence of a prehistoric high-altitude residential site. Located in Africa's largest alpine ecosystem, the repeated occupation of Fincha Habera rock shelter is dated to 47 to 31 thousand years ago. The available resources in cold and glaciated environments included the exploitation of an endemic rodent as a key food source, and this played a pivotal role in facilitating the occupation of this site by Late Pleistocene hunter-gatherers.


Assuntos
Altitude , Camada de Gelo , Ocupações/história , Características de Residência/história , Aclimatação/genética , Animais , Etiópia , Alimentos/história , História Antiga , Humanos , Paleontologia , Roedores
2.
Biol Lett ; 15(7): 20190357, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31337290

RESUMO

Fire is the most frequent disturbance in the Ericaceous Belt (ca 3000-4300 m.a.s.l.), one of the most important plant communities of tropical African mountains. Through resprouting after fire, Erica establishes a positive fire feedback under certain burning regimes. However, present-day human activity in the Bale Mountains of Ethiopia includes fire and grazing systems that may have a negative impact on the resilience of the ericaceous ecosystem. Current knowledge of Erica-fire relationships is based on studies of modern vegetation, lacking a longer time perspective that can shed light on baseline conditions for the fire feedback. We hypothesize that fire has influenced Erica communities in the Bale Mountains at millennial time-scales. To test this, we (1) identify the fire history of the Bale Mountains through a pollen and charcoal record from Garba Guracha, a lake at 3950 m.a.s.l., and (2) describe the long-term bidirectional feedback between wildfire and Erica, which may control the ecosystem's resilience. Our results support fire occurrence in the area since ca 14 000 years ago, with particularly intense burning during the early Holocene, 10.8-6.0 cal ka BP. We show that a positive feedback between Erica abundance and fire occurrence was in operation throughout the Lateglacial and Holocene, and interpret the Ericaceous Belt of the Ethiopian mountains as a long-term fire resilient ecosystem. We propose that controlled burning should be an integral part of landscape management in the Bale Mountains National Park.


Assuntos
Ecossistema , Incêndios , Carvão Vegetal , Etiópia , Humanos , Lagos
3.
Plants (Basel) ; 8(7)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315285

RESUMO

: Despite the fact that the vegetation pattern and history of the Bale Mountains in Ethiopia were reconstructed using pollen, little is known about the former extent of Erica species. The main objective of the present study is to identify unambiguous chemical proxies from plant-derived phenolic compounds to characterize Erica and other keystone species. Mild alkaline CuO oxidation has been used to extract sixteen phenolic compounds. After removal of undesired impurities, individual phenols were separated by gas chromatography and were detected by mass spectrometry. While conventional phenol ratios such as syringyl vs. vanillyl and cinnamyl vs. vanillyl and hierarchical cluster analysis of phenols failed for unambiguous Erica identification, the relative abundance of coumaryl phenols (>0.20) and benzoic acids (0.05-0.12) can be used as a proxy to distinguish Erica from other plant species. Moreover, a Random Forest decision tree based on syringyl phenols, benzoic acids (>0.06), coumaryl phenols (<0.21), hydroxybenzoic acids, and vanillyl phenols (>0.3) could be established for unambiguous Erica identification. In conclusion, serious caution should be given before interpreting this calibration study in paleovegetation reconstruction in respect of degradation and underground inputs of soil organic matter.

4.
Isotopes Environ Health Stud ; 51(4): 508-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26156121

RESUMO

During the last decade compound-specific deuterium ((2)H) analysis of plant leaf wax-derived n-alkanes has become a promising and popular tool in paleoclimate research. This is based on the widely accepted assumption that n-alkanes in soils and sediments generally reflect δ(2)H of precipitation (δ(2)H(prec)). Recently, several authors suggested that δ(2)H of n-alkanes (δ(2)H(n-alkanes)) can also be used as a proxy in paleoaltimetry studies. Here, we present results from a δ(2)H transect study (∼1500 to 4000 m above sea level [a.s.l.]) carried out on precipitation and soil samples taken from the humid southern slopes of Mt. Kilimanjaro. Contrary to earlier suggestions, a distinct altitude effect in δ(2)H(prec) is present above ∼2000 m a.s.l., that is, δ(2)H(prec) values become more negative with increasing altitude. The compound-specific δ(2)H values of nC27 and nC29 do not confirm this altitudinal trend, but rather become more positive both in the O-layers (organic layers) and the Ah-horizons (mineral topsoils). Although our δ(2)H(n-alkane) results are in agreement with previously published results from the southern slopes of Mt. Kilimanjaro [Peterse F, van der Meer M, Schouten S, Jia G, Ossebaar J, Blokker J, Sinninghe Damsté J. Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction. Biogeosciences. 2009;6:2799-2807], a re-interpretation is required given that the δ(2)H(n-alkane) results do not reflect the δ(2)H(prec) results. The theoretical framework for this re-interpretation is based on the evaporative isotopic enrichment of leaf water associated with the transpiration process. Modelling results show that relative humidity, decreasing considerably along the southern slopes of Mt. Kilimanjaro (from 78% in ∼2000 m a.s.l. to 51% in 4000 m a.s.l.), strongly controls δ(2)H(leaf water). The modelled (2)H leaf water enrichment along the altitudinal transect matches well the measured (2)H leaf water enrichment as assessed by using the δ(2)H(prec) and δ(2)H(n-alkane) results and biosynthetic fractionation during n-alkane biosynthesis in leaves. Given that our results clearly demonstrate that n-alkanes in soils do not simply reflect δ(2)H(prec) but rather δ(2)H(leaf water), we conclude that care has to be taken not to over-interpret δ(2)H(n-alkane) records from soils and sediments when reconstructing δ(2)H of paleoprecipitation. Both in paleoaltimetry and in paleoclimate studies changes in relative humidity and consequently in δ(2)H(n-alkane) values can completely mask altitudinally or climatically controlled changes in δ(2)H(prec).


Assuntos
Alcanos/análise , Deutério/análise , Sedimentos Geológicos/análise , Meteorologia , Chuva/química , Solo , Biomarcadores/análise , Paleontologia
5.
Isotopes Environ Health Stud ; 47(3): 286-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21745030

RESUMO

Population pressure increasingly endangers high-mountain ecosystems such as the pastures in the Eastern Pamirs and the mountain forests on Mt. Kilimanjaro. At the same time, these ecosystems constitute the economic basis for millions of people living there. In our study, we, therefore, aimed at characterising the land-use effects on soil degradation and N-cycling by determining the natural abundance of (15)N. A short review displays that δ(15)N of plant-soil systems may often serve as an integrated indicator of N-cycles with more positive δ(15)N values pointing towards N-losses. Results for the high-mountain pastures in the Eastern Pamirs show that intensively grazed pastures are significantly enriched in (15)N compared to the less-exploited pastures by 3.5 ‰, on average. This can be attributed to soil organic matter degradation, volatile nitrogen losses, nitrogen leaching and a general opening of the N-cycle. Similarly, the intensively degraded savanna soils, the cultivated soils and the soils under disturbed forests on the foothill of Mt. Kilimanjaro reveal very positive δ(15)N values around 6.5 ‰. In contrast, the undisturbed forest soils in the montane zone are more depleted in (15)N, indicating that here the N-cycle is relatively closed. However, significantly higher δ(15)N values characterise the upper montane forest zone at the transition to the subalpine zone. We suggest that this reflects N-losses by the recently monitored and climate change and antropogenically induced increasing fire frequency pushing the upper montane rainforest boundary rapidly downhill. Overall, we conclude that the analysis of the (15)N natural abundance in high-mountain ecosystems is a purposeful tool for detecting land-use- or climate change-induced soil degradation and N-cycle opening.


Assuntos
Clima , Ecossistema , Plantas/metabolismo , Solo/química , Altitude , Humanos , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Desenvolvimento Vegetal , Plantas/química , Tadjiquistão
6.
Sci Total Environ ; 376(1-3): 241-54, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17335872

RESUMO

At the lower parts of the forest belt at Mt. Kilimanjaro, selective logging has led to a mosaic of mature forest, old secondary forests ( approximately 60 years), and old clearings ( approximately 10 years) covered by shrub vegetation. These variations in the vegetation are reflected by differences in nutrient leaching from the canopy and in both amount and quality of litter reaching the ground, thereby also influencing mineralization rates and the composition of seepage water in litter percolate and soil solution. The aim of this study was to investigate how above- and belowground nutrient dynamics vary between regeneration stages, and if forest regeneration at the clearings is hampered by a deterioration of abiotic site conditions. K, Mg, Ca, Na and N compounds were analysed in rainfall, throughfall, organic layer percolate and the soil solution to a depth of 1.00 m at three clearings, three secondary forest and four mature forest sites. Element fluxes via throughfall showed only small variations among regeneration stages except for K and NO(3)-N. With 57-83 kg ha(-1) a(-1)and 2.6-4.1 kg ha(-1) a(-1) respectively, K and NO(3)-N fluxes via throughfall were significantly higher at the clearings than at the mature forest sites (32-37 and 0.7-1.0 kg ha(-1) a(-1) for K and NO(3)-N). In organic layer percolate and in soil solution at 0.15-m soil depth, concentrations of K, Mg, Ca and N were highest at the clearings. In the organic layer percolate, median K concentrations were e.g. 7.4 mg l(-1) for the clearings but only 1.4 mg l(-1) for the mature forests, and for NO(3)-N, median concentrations were 3.1 mg l(-1) for the clearings but only 0.92 mg l(-1) for the mature forest sites. Still, differences in annual means between clearings and mature forests were not always significant due to a high variability within the clearings. With the exception of NO(3)-N, belowground nutrient concentrations in secondary forests ranged between concentrations in mature forests and clearings. Vegetation type-specific differences decreased with increasing soil depths in the soil solution. Overall, the opening of the forest led to a higher spatial and seasonal variation of nutrient concentrations in the seepage water. These results suggest differences in both mineralization rates and in nutrient budgeting at different regeneration stages. Since nutrient availability was highest at the clearings and no compaction of the soil was observed, deterioration of soil properties did not seem to be the main reason for the impeded regeneration on the clearings.


Assuntos
Solo/análise , Árvores , Meio Ambiente , Metais/análise , Nitratos/análise , Nitrogênio/análise , Compostos de Amônio Quaternário/análise , Chuva , Tanzânia , Tempo
7.
Rapid Commun Mass Spectrom ; 17(9): 970-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12717771

RESUMO

The performance of a gas chromatography-combustion-isotope ratio mass spectrometry system (GC-C-IRMS) with respect to the dependence of delta(13)C values on the amount of sample is presented. Particular attention is paid to the localization of the amount-dependent isotopic fractionation within the system. Injection experiments with varying amounts of gases (CO(2), n-hexane, and toluene) revealed that neither the detector unit nor the combustion reactor, but rather the conditions in the split/splitless injector, contributed to this effect. Although optimization of injector parameters was performed and a reduction of this adverse effect from 3 to 1 per thousand was achieved, it was not possible to eliminate isotopic fractionation completely. Consequently, additional injector parameters have to be considered and adjusted to achieve injection conditions free of fractionation. For routine analysis of the compound-specific delta(13)C analysis of different biomarkers in many environmental samples, perfect optimization may not always be reached. Therefore, in order to prevent systematic errors in the measured delta(13)C values due to different sample concentrations, it is suggested that correction for the remaining unknown amount-dependent fractionation can be made by means of co-analyzing standards of varying analyte concentrations and known delta(13)C values. Residual overall amount-dependent isotope-fractionation can thus be corrected mathematically.


Assuntos
Isótopos de Carbono/análise , Algoritmos , Aminoácidos/análise , Amino Açúcares/análise , Dióxido de Carbono/química , Cromatografia Gasosa-Espectrometria de Massas , Hexanos/química , Indicadores e Reagentes , Lignina/análise , Modelos Lineares , Fenóis/análise , Fosfolipídeos/análise , Padrões de Referência , Tolueno/química
8.
J Environ Qual ; 31(5): 1636-48, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12371181

RESUMO

Within the last 25 years an intensive agriculture has developed in the highland regions of Mato Grosso state (Brazil), which involves frequent pesticide use in highly mechanized cash-crop cultures. To provide information on pesticide distribution and dynamics in the northeastern Pantanal basin (located in southern Mato Grosso), we monitored 29 pesticides and 3 metabolites in surface water, sediment, and rainwater of the study area during the main application season. In environmental samples, 19 pesticides and 3 metabolites were detected in measurable quantities, resulting in at least one pesticide detection in 68% of surface water samples (n = 139), 62% of sediment samples (n = 26), and 87% of rainwater samples (n = 91). Surface water samples were most frequently contaminated by endosulfan compounds (alpha-, beta-, -sulfate), ametryn, metolachlor, and metribuzin, although in low (< 0.1 microgram L-1) concentrations. Sediment samples exhibited concentrations up to 4.5 micrograms kg-1 of p,p'-DDT, p,p'-DDE, endosulfan-sulfate, beta-endosulfan, and ametryn. In contrast, rainwater was polluted with substantial amounts of endosulfan, alachlor, metolachlor, trifluralin, monocrotofos, and profenofos (maximum concentrations = 0.3 to 2.3 micrograms L-1) in the highlands. Lowland rainwater samples taken 75 km from the next application area contained 5- to 10-fold lower mean pesticide concentration than in the highlands. Cumulative deposition rates of the pesticide sum within the study period ranged from 423 micrograms m-2 in the highlands to 14 micrograms m-2 in the lowlands. The atmospheric input of pesticides to ecosystems seemed to be of higher relevance in the tropical study area than known from temperate regions.


Assuntos
Sedimentos Geológicos/química , Praguicidas/análise , Poluentes Químicos da Água/análise , Agricultura , Brasil , Monitoramento Ambiental , Chuva , Clima Tropical
9.
J Agric Food Chem ; 50(16): 4619-27, 2002 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-12137486

RESUMO

The dissipation rate of seven currently used soybean and corn pesticides in two tropical soils (Ustox and Psamments) of Brazil was studied in a laboratory incubation experiment. Dissipation half-lives of pesticides ranged between 2 (monocrotofos) and 90 days (endosulfan-beta). The contrasting clay contents of the studied tropical soils (130 versus 470 g of clay kg(-1) of soil) did not influence the dissipation dynamics of pesticides substantially. Mineralization to CO(2) was high [up to 78% of the applied radioactivity (AR)] for the studied organophosphorus compounds and deltamethrin, which also formed considerable amounts of bound residues (>20% of AR) during the 80 days of incubation. The highest portion of nonextractable residues was found for alachlor and simazine (55-60% of AR). In contrast, the nonpolar trifluralin and endosulfan formed only small amounts of bound residues (mostly <20% of AR) but showed the highest dissipation half-lives (>14 days) in the studied soils, also due to a low mineralization rate. When endosulfan-sulfate, as the main metabolite of endosulfan, was considered, the half-life time of endosulfan compounds (sum of -alpha, -beta, and -sulfate) was enhanced to >160 days in both soils. In comparison with the laboratory experiments, dissipation half-life times of chlorpyrifos, endosulfan-alpha, and trifluralin were shortened by a factor of 10-30 in field trials with the same soils, which was related to the volatilization potential of pesticides from soils.


Assuntos
Glycine max , Resíduos de Praguicidas/análise , Praguicidas/química , Solo/análise , Zea mays , Acetamidas/química , Brasil , Radioisótopos de Carbono , Clorpirifos/química , Endossulfano/química , Meia-Vida , Herbicidas/química , Inseticidas/química , Marcação por Isótopo , Monocrotofós/química , Nitrilas , Piretrinas/química , Simazina/química , Trifluralina/química , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA