Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 4(20): 6196-204, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22948414

RESUMO

In functional materials, nanoscale phase boundaries exhibit exotic phenomena that are notably absent in their parent phases. Over the past two decades, much of the research into complex oxides (such as cuprate superconductors, CMR manganites and relaxor ferroelectrics) has demonstrated the key role that nanoscale inhomogeneities play in controlling the electronic and/or ionic structure of these materials. One of the key characteristics in such systems is the strong susceptibility to external perturbations, such as magnetic, electric and mechanical fields. A direct consequence of the accommodation of a large number of cationic substitutions in complex oxides is the emergence of a number of physical phenomena from essentially the same crystal framework. Recently, multiferroic behavior, which is characterized by the co-existence and potential coupling of multiple ferroic order parameters, has captured considerable worldwide research interest. The perovskite, BiFeO(3), exhibits robust ferroelectricity coupled with antiferromagnetism at room temperature. A rather unique feature of this material system is its ability to "morph" its ground state when an external mechanical constraint is imposed on it. A particularly striking example is observed when a large (~4 to 5%) compressive strain is imposed on a thin film through the epitaxial constraint from the underlying substrate. Under these conditions, the ground state rhombohedral phase transforms into a tetragonal-like (or a derivative thereof) phase with a rather large unit cell (c/a ratio of ~1.26). When the epitaxial constraint is partially relaxed by increasing the film thickness, this tetragonal-like phase evolves into a "mixed-phase" state, consisting of a nanoscale admixture of the rhombohedral-like phase embedded in the tetragonal-like phase. Such a system gives us a new pathway to explore a variety of mechanical, magnetic and transport phenomena in constrained dimensions. This article reviews our progress to date in this direction and also captures some possible areas of future research. We use the electromechanical response and the magnetic properties as examples to illustrate that its novel functionalities are intrinsically due to the phase boundaries and not the constituent phases. The possible origin of the giant piezoelectric response and enhanced magnetic moment across the boundaries is proposed based on the flexoelectric and flexomagnetic effects.

2.
Phys Rev Lett ; 108(4): 047601, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400888

RESUMO

We determine the atomic structure of the pseudotetragonal T phase and the pseudorhombohedral R phase in highly strained multiferroic BiFeO(3) thin films by using a combination of atomic-resolution scanning transmission electron microscopy and electron energy-loss spectroscopy. The coordination of the Fe atoms and their displacement relative to the O and Bi positions are assessed by direct imaging. These observations allow us to interpret the electronic structure data derived from electron energy-loss spectroscopy and provide evidence for the giant spontaneous polarization in strained BiFeO(3) thin films.

3.
Phys Rev Lett ; 107(14): 147602, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107234

RESUMO

We report direct experimental evidence for a room-temperature, ∼130 µC/cm(2) ferroelectric polarization from the tetragonal-like BiFeO(3) phase. The physical origin of this remarkable enhancement of ferroelectric polarization has been investigated by a combination of x-ray absorption spectroscopy, scanning transmission electron microscopy, and first principles calculations. A large strain-induced Fe-ion displacement relative to the oxygen octahedra, combined with the contribution of Bi 6s lone pair electrons, is the mechanism driving the large ferroelectric polarization in this tetragonal-like phase.

4.
Nat Commun ; 2: 225, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21407191

RESUMO

Magnetoelectrics and multiferroics present exciting opportunities for electric-field control of magnetism. However, there are few room-temperature ferromagnetic-ferroelectrics. Among the various types of multiferroics the bismuth ferrite system has received much attention primarily because both the ferroelectric and the antiferromagnetic orders are quite robust at room temperature. Here we demonstrate the emergence of an enhanced spontaneous magnetization in a strain-driven rhombohedral and super-tetragonal mixed phase of BiFeO3. Using X-ray magnetic circular dichroism-based photoemission electron microscopy coupled with macroscopic magnetic measurements, we find that the spontaneous magnetization of the rhombohedral phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent tetragonal-like phase and the epitaxial constraint. Reversible electric-field control and manipulation of this magnetic moment at room temperature is also shown.


Assuntos
Magnetismo , Teste de Materiais , Bismuto/química , Eletricidade , Fenômenos Eletromagnéticos , Microanálise por Sonda Eletrônica , Compostos Férricos/química , Nanopartículas de Magnetita , Temperatura
5.
Nat Nanotechnol ; 6(2): 98-102, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21240285

RESUMO

Piezoelectric materials exhibit a mechanical response to electrical inputs, as well as an electrical response to mechanical inputs, which makes them useful in sensors and actuators. Lead-based piezoelectrics demonstrate a large mechanical response, but they also pose a health risk. The ferroelectric BiFeO(3) is an attractive alternative because it is lead-free, and because strain can stabilize BiFeO(3) phases with a structure that resembles a morphotropic phase boundary. Here we report a reversible electric-field-induced strain of over 5% in BiFeO(3) films, together with a characterization of the origins of this effect. In situ transmission electron microscopy coupled with nanoscale electrical and mechanical probing shows that large strains result from moving the boundaries between tetragonal- and rhombohedral-like phases, which changes the phase stability of the mixture. These results demonstrate the potential of BiFeO(3) as a substitute for lead-based materials in future piezoelectric applications.


Assuntos
Bismuto/química , Compostos Férricos/química , Nanoestruturas/química , Nanotecnologia , Cerâmica/química , Cristalização/métodos , Eletricidade , Chumbo/química , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Transição de Fase , Estresse Mecânico , Transdutores
6.
Science ; 326(5955): 977-80, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19965507

RESUMO

Piezoelectric materials, which convert mechanical to electrical energy and vice versa, are typically characterized by the intimate coexistence of two phases across a morphotropic phase boundary. Electrically switching one to the other yields large electromechanical coupling coefficients. Driven by global environmental concerns, there is currently a strong push to discover practical lead-free piezoelectrics for device engineering. Using a combination of epitaxial growth techniques in conjunction with theoretical approaches, we show the formation of a morphotropic phase boundary through epitaxial constraint in lead-free piezoelectric bismuth ferrite (BiFeO3) films. Electric field-dependent studies show that a tetragonal-like phase can be reversibly converted into a rhombohedral-like phase, accompanied by measurable displacements of the surface, making this new lead-free system of interest for probe-based data storage and actuator applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA