Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240370

RESUMO

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo
2.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668129

RESUMO

Muscle disuse and denervation leads to muscle atrophy, but underlying mechanisms can be different. Previously, we have found ceramide (Cer) accumulation and lipid raft disruption after acute hindlimb suspension (HS), a model of muscle disuse. Herein, using biochemical and fluorescent approaches the influence of unilateral denervation itself and in combination with short-term HS on membrane-related parameters of rat soleus muscle was studied. Denervation increased immunoexpression of sphingomyelinase and Cer in plasmalemmal regions, but decreased Cer content in the raft fraction and enhanced lipid raft integrity. Preliminary denervation suppressed (1) HS-induced Cer accumulation in plasmalemmal regions, shown for both nonraft and raft-fractions; (2) HS-mediated decrease in lipid raft integrity. Similar to denervation, inhibition of the sciatic nerve afferents with capsaicin itself increased Cer plasmalemmal immunoexpression, but attenuated the membrane-related effects of HS. Finally, both denervation and capsaicin treatment increased immunoexpression of proapoptotic protein Bax and inhibited HS-driven increase in antiapoptotic protein Bcl-2. Thus, denervation can increase lipid raft formation and attenuate HS-induced alterations probably due to decrease of Cer levels in the raft fraction. The effects of denervation could be at least partially caused by the loss of afferentation. The study points to the importance of motor and afferent inputs in control of Cer distribution and thereby stability of lipid rafts in the junctional and extrajunctional membranes of the muscle.


Assuntos
Adaptação Fisiológica , Membrana Celular/metabolismo , Ceramidas/metabolismo , Elevação dos Membros Posteriores/fisiologia , Microdomínios da Membrana/fisiologia , Denervação Muscular , Músculo Esquelético/fisiologia , Animais , Masculino , Músculo Esquelético/inervação , Ratos , Ratos Wistar
3.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574943

RESUMO

Lipid raft disruption is an early event during skeletal muscle unloading. Ceramide (Cer) serves as a signaling lipid that can contribute to lipid raft disturbance and muscle atrophy. Using biochemical and fluorescent approaches, the distribution of Cer and related molecules in the rat soleus muscle subjected to 12 h of hindlimb suspension (HS) was studied. HS led to upregulation of TNFα receptor 1 (TNFR1), Cer-producing enzymes, and acid and neutral sphingomyelinase (SMase) in detergent-resistant membranes (lipid rafts), which was accompanied by an increase in Cer and a decrease in sphingomyelin in this membrane fraction. Fluorescent labeling indicated increased Cer in the sarcoplasm as well as the junctional (synaptic) and extrajunctional compartments of the suspended muscles. Also, a loss of membrane asymmetry (a hallmark of membrane disturbance) was induced by HS. Pretreatment with clomipramine, a functional inhibitor of acid SMase, counteracted HS-mediated changes in the Cer/sphingomyelin ratio and acid SMase abundance as well as suppressed Cer accumulation in the intracellular membranes of junctional and extrajunctional regions. However, the elevation of plasma membrane Cer and disturbance of the membrane asymmetry were suppressed only in the junctional compartment. We suggest that acute HS leads to TNFR1 and SMase upregulation in the lipid raft fraction and deposition of Cer throughout the sarcolemma and intracellularly. Clomipramine-mediated downregulation of acid SMase can suppress Cer accumulation in all compartments, excluding the extrajunctional plasma membrane.


Assuntos
Membrana Celular/metabolismo , Ceramidas/metabolismo , Músculo Esquelético/metabolismo , Animais , Biomarcadores , Imunofluorescência , Microdomínios da Membrana/metabolismo , Junção Neuromuscular/metabolismo , Ratos , Esfingomielina Fosfodiesterase/metabolismo
4.
J Alzheimers Dis ; 69(2): 443-453, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958382

RESUMO

BACKGROUND/OBJECTIVE: Alzheimer's disease (AD) is a progressive incurable neurodegenerative disorder. Glial cell line-derived neurotrophic factor (GDNF) is a prominent regulator of brain tissue and has an impressive potential for use in AD therapy. While its metabolism is still not fully understood, delivering neuropeptides such as GDNF via umbilical cord blood mononuclear cells (UCBMCs) to the sites of neurodegeneration is a promising approach in the development of innovative therapeutic avenues. METHODS: UCBMCs were transduced with adenoviral vectors expressing GDNF and injected into AD transgenic mice. Various parameters including homing and survival of transplanted cells, expression of GDNF and synaptic proteins, as well as spatial memory were evaluated. RESULTS: UCBMCs were observed in the hippocampus and cortex several weeks after transplantation, and their long-term presence was associated with improved spatial memory. Post-synaptic density protein 95 (PSD-95) and synaptophysin levels in the hippocampus were also effectively restored following the procedure in AD mice. CONCLUSIONS: Our data indicate that gene-cell therapy with GDNF-overexpressing UCBMCs may produce long-lasting neuroprotection and stimulation of synaptogenesis. Such adenoviral constructs could potentially possess a high therapeutic potential for the treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Hipocampo/metabolismo , Memória Espacial/fisiologia , Doença de Alzheimer/genética , Animais , Proteína 4 Homóloga a Disks-Large/biossíntese , Proteína 4 Homóloga a Disks-Large/genética , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Gravidez , Sinaptofisina/biossíntese , Sinaptofisina/genética
5.
Neural Plast ; 2017: 9202584, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28770114

RESUMO

This study provides further insight into the molecular mechanisms that control neurotransmitter release. Experiments were performed on larval neuromuscular junctions of transgenic Drosophila melanogaster lines with different levels of human amyloid precursor protein (APP) production. To express human genes in motor neurons of Drosophila, the UAS-GAL4 system was used. Human APP gene expression increased the number of synaptic boutons per neuromuscular junction. The total number of active zones, detected by Bruchpilot protein puncta distribution, remained unchanged; however, the average number of active zones per bouton decreased. These disturbances were accompanied by a decrease in frequency of miniature excitatory junction potentials without alteration in random nature of spontaneous quantal release. Similar structural and functional changes were observed with co-overexpression of human APP and ß-secretase genes. In Drosophila line with expression of human amyloid-ß42 peptide itself, parameters analyzed did not differ from controls, suggesting the specificity of APP effects. These results confirm the involvement of APP in synaptogenesis and provide evidence to suggest that human APP overexpression specifically disturbs the structural and functional organization of active zone and results in altered Bruchpilot distribution and lowered probability of spontaneous neurotransmitter release.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Expressão Gênica , Humanos
6.
Am J Physiol Cell Physiol ; 312(5): C627-C637, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274922

RESUMO

Marked loss of skeletal muscle mass occurs under various conditions of disuse, but the molecular and cellular mechanisms leading to atrophy are not completely understood. We investigate early molecular events that might play a role in skeletal muscle remodeling during mechanical unloading (disuse). The effects of acute (6-12 h) hindlimb suspension on the soleus muscles from adult rats were examined. The integrity of plasma membrane lipid rafts was tested utilizing cholera toxin B subunit or fluorescent sterols. In addition, resting intracellular Ca2+ level was analyzed. Acute disuse disturbed the plasma membrane lipid-ordered phase throughout the sarcolemma and was more pronounced in junctional membrane regions. Ouabain (1 µM), which specifically inhibits the Na-K-ATPase α2 isozyme in rodent skeletal muscles, produced similar lipid raft changes in control muscles but was ineffective in suspended muscles, which showed an initial loss of α2 Na-K-ATPase activity. Lipid rafts were able to recover with cholesterol supplementation, suggesting that disturbance results from cholesterol loss. Repetitive nerve stimulation also restores lipid rafts, specifically in the junctional sarcolemma region. Disuse locally lowered the resting intracellular Ca2+ concentration only near the neuromuscular junction of muscle fibers. Our results provide evidence to suggest that the ordering of lipid rafts strongly depends on motor nerve input and may involve interactions with the α2 Na-K-ATPase. Lipid raft disturbance, accompanied by intracellular Ca2+ dysregulation, is among the earliest remodeling events induced by skeletal muscle disuse.


Assuntos
Cálcio/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Músculo Esquelético/fisiopatologia , Transtornos Musculares Atróficos/fisiopatologia , Animais , Sinalização do Cálcio , Elevação dos Membros Posteriores , Masculino , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/patologia , Ratos , Ratos Wistar
7.
J Alzheimers Dis ; 54(4): 1373-1383, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27589530

RESUMO

Alzheimer's disease (AD) is a devastating and progressive form of dementia that is typically associated with a build-up of amyloid-ß plaques and hyperphosphorylated and misfolded tau protein in the brain. Presently, there is no single test that confirms AD; therefore, a definitive diagnosis is only made after a comprehensive medical evaluation, which includes medical history, cognitive tests, and a neurological examination and/or brain imaging. Additionally, the protracted prodromal phase of the disease makes selection of control subjects for clinical trials challenging. In this study we have utilized a gene-expression array to screen blood and skin punch biopsy (fibroblasts, keratinocytes, and endothelial cells) for transcriptional differences that may lead to a greater understanding of AD as well as identify potential biomarkers. Our analysis identified 129 differentially expressed genes from blood of dementia cases when compared to healthy individuals, and four differentially expressed punch biopsy genes between AD subjects and controls. Additionally, we identified a set of genes in both tissue compartments that showed transcriptional variation in AD but were largely stable in controls. The translational products of these variable genes are involved in the maintenance of the Golgi structure, regulation of lipid metabolism, DNA repair, and chromatin remodeling. Our analysis potentially identifies specific genes in both tissue compartments that may ultimately lead to useful biomarkers and may provide new insight into the pathophysiology of AD.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Linfócitos/metabolismo , Idoso , Doença de Alzheimer/diagnóstico , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Projetos Piloto , Transcrição Gênica/fisiologia
8.
J Gen Physiol ; 147(2): 175-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26755774

RESUMO

The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6-12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated differently.


Assuntos
Isoenzimas/metabolismo , Músculo Esquelético/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Masculino , Potenciais da Membrana/fisiologia , Proteínas de Membrana/metabolismo , Contração Muscular/fisiologia , Fosfoproteínas/metabolismo , Fosforilação/fisiologia , Ratos , Ratos Wistar , Receptores Nicotínicos/metabolismo , Sarcolema/metabolismo
9.
Diab Vasc Dis Res ; 12(6): 445-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26410835

RESUMO

Mental illnesses are frequent co-morbid conditions in chronic systemic diseases. High incidences of depression, anxiety and cognitive impairment complicate cardiovascular and metabolic disorders such as hypertension and diabetes mellitus. Lifestyle changes including regular exercise have been advocated to reduce blood pressure and improve glycaemic control. The purpose of this project was to evaluate the effect of physical training on the most prevalent corollary psychiatric problems in patients with chronic organic ailments. This longitudinal study assessed the mental health of hypertensive (age: 57 ± 8 years) and/or diabetic (age: 53 ± 8 years) patients using mini-mental state examination, Beck's depression inventory, Beck's anxiety inventory and self-reporting questionnaire-20 before and after a 3-month supervised resistance and aerobic exercise programme comprising structured physical activity three times a week. Clinically relevant improvement was observed in the Beck's depression inventory and Beck's anxiety inventory scores following the 12-week training (61%, p = 0.001, and 53%, p = 0.02, respectively). Even though statistically not significant (p = 0.398), the cognitive performance of this relatively young patient population also benefited from the programme. These results demonstrate positive effects of active lifestyle on non-psychotic mental disorders in patients with chronic systemic diseases, recommending exercise as an alternative treatment option.


Assuntos
Transtornos de Ansiedade/terapia , Ansiedade/terapia , Cognição/fisiologia , Exercício Físico/fisiologia , Estilo de Vida , Adulto , Idoso , Ansiedade/diagnóstico , Ansiedade/fisiopatologia , Transtornos de Ansiedade/fisiopatologia , Doença Crônica , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários
10.
J Physiol ; 592(22): 4995-5009, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25326454

RESUMO

Using electrophysiological and optical techniques, we studied the mechanisms by which cholesterol depletion stimulates spontaneous transmitter release by exocytosis at the frog neuromuscular junction. We found that methyl-ß-cyclodextrin (MCD, 10 mM)-mediated exhaustion of cholesterol resulted in the enhancement of reactive oxygen species (ROS) production, which was prevented by the antioxidant N-acetyl cysteine (NAC) and the NADPH oxidase inhibitor apocynin. An increase in ROS levels occurred both extra- and intracellularly, and it was associated with lipid peroxidation in synaptic regions. Cholesterol depletion provoked a rise in the intracellular Ca(2+) concentration, which was diminished by NAC and transient receptor potential vanilloid (TRPV) channel blockers (ruthenium red and capsazepine). By contrast, the MCD-induced rise in [Ca(2+)]i remained unaffected if Ca(2+) release from endoplasmic stores was blocked by TMB8 (8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride). The effects of cholesterol depletion on spontaneous release and exocytosis were significantly reduced by the antioxidant, intracellular Ca(2+) chelation with BAPTA-AM and blockers of TRPV channels. Bath application of the calcineurin antagonist cyclosporine A blocked MCD-induced enhancement of spontaneous release/exocytosis, whereas okadaic acid, an inhibitor of phosphatases PP1 and PP2A, had no effect. Thus, our findings indicate that enhancement of spontaneous exocytosis induced by cholesterol depletion may depend on ROS generation, leading to an influx of Ca(2+) via TRPV channels and, subsequently, activation of calcineurin.


Assuntos
Cálcio/metabolismo , Colesterol/metabolismo , Exocitose , Junção Neuromuscular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetofenonas/farmacologia , Acetilcisteína/farmacologia , Animais , Sinalização do Cálcio , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Ciclosporina/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Ácido Okadáico/farmacologia , Ranidae , Rutênio Vermelho/farmacologia , Membranas Sinápticas/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , beta-Ciclodextrinas/farmacologia
11.
Muscle Nerve ; 43(6): 872-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21488058

RESUMO

INTRODUCTION: Alzheimer's ß-amyloid peptide (ßAP) is known to possess a wide range of toxic effects on neurons in vitro and in vivo; however, there is little information available regarding its impact on other excitable tissues such as skeletal muscles, which, apart from brain cells, are thought to also be targets of ßAP. METHODS: Utilizing the combination of electrophysiology and myography, we investigated whether ßAP also impairs the functioning of myocytes in frogs and mice. RESULTS: Although application of ßAP in the range of 10(-6) to 10(-8) M induced depolarization of muscle fibers in both species, it impaired contractility in frogs but not in mice, by reducing endplate potential amplitude and increasing the threshold potential. CONCLUSIONS: Unchanged contractility in the mouse in the presence of ßAP is due to a higher safety factor of neuromuscular transmission in mammals compared with amphibians. Possible clinical implications are discussed.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Encéfalo/fisiopatologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiopatologia , Fragmentos de Peptídeos/toxicidade , Peptídeos beta-Amiloides/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Diafragma/metabolismo , Diafragma/fisiopatologia , Eletromiografia/métodos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Fragmentos de Peptídeos/fisiologia , Rana ridibunda , Especificidade da Espécie
12.
Brain Res Bull ; 81(6): 613-6, 2010 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-20043980

RESUMO

Calcium/calmodulin-dependent protein-kinase II (CaMKII) is a ubiquitous intracellular enzyme, which is implicated in learning and memory mechanisms in the central nervous system, however its contribution to peripheral cholinergic neurotransmission is not well characterized. This study evaluated the impact of CaMKII on the function of frog neuromuscular synapse using electrophysiological recordings. Application of the selective CaMKII inhibitor KN-93 (5 microM) did not significantly alter the parameters of evoked and spontaneous quantal acetylcholine release under low-frequency stimulation (0.03 Hz). KN-93, on the other hand, produced pronounced changes in short-term synaptic plasticity: particularly, KN-93 inhibits the second component of paired-pulse facilitation (interpulse intervals of 100 ms and longer) and strengthens the depression of synaptic transmission under high-frequency stimulation (50 Hz). These results imply that CaMKII plays an important role in presynaptic functions at the frog neuromuscular junction, and potentiates quantal acetylcholine release under high-frequency activity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Junção Neuromuscular/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolina/metabolismo , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Estimulação Elétrica , Potenciais Evocados , Potenciais Pós-Sinápticos Excitadores , Microeletrodos , Junção Neuromuscular/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Rana ridibunda , Sulfonamidas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo
13.
J Alzheimers Dis ; 21(4): 1153-64, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21504113

RESUMO

Several biomarkers are used in confirming the diagnosis of cognitive disorders. This study evaluates whether the level of these markers after heart surgery correlates with the development of cognitive dysfunction, which is a frequent complication of cardiac interventions. Concentrations of amyloid-ß peptide, tau, and S100ß in the cerebro-spinal fluid were assessed, as well as cognitive functions were evaluated before and after coronary artery bypass grafting, utilizing immuno-assays and psychometric tests, respectively. A drastic rise in the level of S100ß was observed one week after the surgery, a mark of a severe generalized cerebral injury. The level of amyloid-ß peptide significantly decreased, whereas the concentration of tau markedly increased six months postoperatively. Gradual cognitive decline was also present. These findings clearly demonstrate post-surgical cognitive impairment associated with changes in biomarkers similar to that seen in Alzheimer's disease, suggesting a unifying pathognomic factor between the two disorders. A holistic approach to coronary heart disease and Alzheimer's type dementia is proposed.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Ponte de Artéria Coronária/efeitos adversos , Idoso , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Transtornos Cognitivos/líquido cefalorraquidiano , Transtornos Cognitivos/diagnóstico , Doença da Artéria Coronariana/líquido cefalorraquidiano , Doença da Artéria Coronariana/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Crescimento Neural/líquido cefalorraquidiano , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Projetos Piloto , Complicações Pós-Operatórias/líquido cefalorraquidiano , Complicações Pós-Operatórias/diagnóstico , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
14.
Cell Physiol Biochem ; 23(1-3): 109-14, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19255505

RESUMO

Numerous findings obtained over the last decades suggest that accumulation of beta-amyloid peptide (betaAP) plays the central role in the pathogenesis of Alzheimer's disease. It is well established that betaAP has wide range of toxic effects on neurons in vitro and in vivo, however the influence of betaAP in the periphery and on various other types of excitable tissues, eg. skeletal muscle cells, is almost unknown despite the many non-cognitive and other extra-neuronal symptoms associated with Alzheimer's dementia. Here we utilized conventional electrophysiological technique to investigate the effects and mechanisms of betaAP action on the resting membrane potential of frog skeletal muscle fibers. betaAP in the range of concentrations from 10(-6) to 10(-8)M produced slow, significant, reversible depolarization of muscle fiber membranes. The impact developed and was washed out faster at higher concentrations of betaAP (10(-6)-0(-7)M). The effect of betaAP was completely absent when applied in Na+-free Tris+ solutions. betaAP-mediated depolarization was also prevented by tetrodotoxin (10(-5)M) pre-treatment and rescued by tetrodotoxin after-treatment. These findings suggest that betaAP-induced depolarization of skeletal muscle plasma membranes can significantly disturb the functioning of skeletal muscles and therefore contribute to motor dysfunction observed in Alzheimer's disease and other disorders associated with betaAP accumulation.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Demência/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fragmentos de Peptídeos/farmacologia , Animais , Anuros , Eletrofisiologia/métodos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Tetrodotoxina/farmacologia
15.
Pflugers Arch ; 458(3): 563-70, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19194721

RESUMO

We have studied the mechanisms of paired-pulse facilitation (PPF) of neurotransmitter release in isolated nerve-muscle preparations of the frog cutaneous pectoris muscle. In normal extracellular Ca(2+) concentration ([Ca(2+)](o), 1.8 mM), as the interpulse interval was increased from 5 to 500 ms, PPF decayed as a sum of two exponential components: a larger but shorter first component (F1) and a smaller but more prolonged second component (F2). In low [Ca(2+)](o) (0.5 mM), both F1 and F2 increased, and a third "early" component (Fe) appeared whose amplitude was larger and whose duration was shorter than F1 or F2. In the presence of the "fast" Ca(2+) buffer BAPTA-AM, Fe disappeared, whereas F1 and F2 decreased in amplitude and duration. In contrast, the "slow" Ca(2+) buffer EGTA-AM caused a decrease of Fe and reduction or complete blockade of F2, without any changes of F1. In solutions containing Sr(2+) (1 mM), the magnitude of Fe was decreased, F1 was significantly reduced and shortened, but F2 was unaffected. Application of the calmodulin inhibitor W-7 (10 microM) at normal [Ca(2+)](o) produced a marked decrease of F2, and at low [Ca(2+)](o), a complete blockade of Fe. These results suggest that PPF at frog motor nerve terminals is mediated by several specific for different PPF components intraterminal Ca(2+) binding sites, which trigger neurotransmitter release. These sites have a higher affinity for Ca(2+) ions and are located farther from the release-controlling Ca(2+) channels than the Ca (2+) sensor that mediates phasic release.


Assuntos
Estimulação Elétrica/métodos , Potenciação de Longa Duração/fisiologia , Junção Neuromuscular/fisiologia , Neurotransmissores/fisiologia , Rana ridibunda/fisiologia , Transmissão Sináptica/fisiologia , Animais
16.
Exp Physiol ; 94(2): 264-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19060115

RESUMO

Skeletal muscles play key roles in the development of various pathologies, including bronchial asthma and several types of auto-immune disorders, e.g. polymyositis. Since most of these maladies have an immunological/allergic element, this paper is devoted to assessing the impact of immunobiological reorganization on the functional properties of isolated skeletal muscles in mice. A combination of two methods (myography and electrophysiology) was used to evaluate extensor digitorum longus (EDL) and diaphragmatic muscle (DM) in this regard. Conventional myographic technique showed that ovalbumin-induced sensitization (OS) produced different changes in the contractile properties of EDL and DM. The amplitudes of carbachol (CCh)-induced contractions increased in DM but decreased in EDL. Those changes were inversely related to OS-mediated changes of non-quantal acetylcholine (ACh) release intensity within the muscle endplate, as shown by the electrophysiologically measured H-effect. These results clearly show that OS-mediated changes of non-quantal ACh release alter the functional properties of postjunctional ACh receptors and therefore contribute to the disturbance of CCh-induced contractility of skeletal muscles. Other mechanisms of OS-mediated changes of skeletal muscle contractility are also proposed and discussed.


Assuntos
Acetilcolina/metabolismo , Imunização/métodos , Neurônios Motores/metabolismo , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/fisiologia , Ovalbumina/farmacologia , Terminações Pré-Sinápticas/metabolismo , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Modelos Animais de Doenças , Eletrofisiologia/métodos , Feminino , Hipersensibilidade/metabolismo , Hipersensibilidade/fisiopatologia , Masculino , Camundongos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Miografia/métodos , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiopatologia , Ovalbumina/efeitos adversos
17.
Biol Psychiatry ; 64(10): 891-5, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18760772

RESUMO

BACKGROUND: Neuro-inflammation, triggered by beta-amyloid peptide, is implicated as one of the primary contributors to Alzheimer's disease (AD) pathogenesis, and several cytokines were identified as key instigating factors. METHODS: To reveal the inflammatory response of lymphocytes to the neuro-toxic beta-amyloid peptide, we evaluated the release of several cytokines from peripheral blood mononuclear cells with immuno-assays (ELISA). From hyper-acute to chronic effects of beta-amyloid peptide were assessed at a wide range of concentrations. RESULTS: The pro-inflammatory interleukin (IL)-1beta, tumor necrosis factor-alpha, monocyte chemotactic protein-1, and Rantes (acronym for regulated on activation, normal T-cell expressed and secreted) as well as the pleiotropic IL-6 showed a biphasic release pattern over time in both low and high doses of amyloid treatment: after an initial increase, their concentration gradually fell to the baseline. The suppressors IL-4 and IL-10 had a sinus-like secretion panel: an acute increase in their levels turned to a depression and later followed by their over-secretion. Interestingly, beta-amyloid below 10(-8) mol/L produced no effect at all, but any molarity above this threshold caused the very same cytokine secretion pattern, the mark of an all-or-nothing response of beta-amyloid peptide. CONCLUSIONS: These results delineate a highly organized pro- and anti-inflammatory response of cells to the neuro-toxic peptide. This is the first study to describe how the beta-amyloid-induced inflammatory processes in Alzheimer's dementia are regulated.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Citocinas/metabolismo , Linfócitos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Adulto , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Linfócitos/metabolismo , Masculino , Fatores de Tempo , Adulto Jovem
18.
Curr Drug Metab ; 8(2): 177-84, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17305496

RESUMO

Carbon monoxide (CO) is an endogenous gaseous messenger, which regulates numerous physiological functions in a wide variety of tissues. Using extracellular microelectrode recording from frog neuro-muscular preparation the mechanisms of exogenous and endogenous CO action on evoked quantal acetyl-choline (Ach) release were studied. It was shown that CO application increases Ach-release in dose-dependent manner without changes in pre-synaptic Na+ and K+ currents. The effect of exogenous CO on Ach-release was decreased by prior application of guanylate cyclase inhibitor ODQ and prevented by application of a cyclic guanylate monophosphate (cGMP) analog 8Br-cGMP. Pre-treatment of the preparation with adenylate cyclase inhibitor MDL-12330A has completely abolished the effect of CO, whereas elevation of intracellular level of cyclic adenosine monophosphate (cAMP) mimicked and eliminated CO action. Application of cGMP-activated phosphodiesterase-2 inhibitor EHNA did not prevent CO action, whereas inhibition of cGMP-inhibited phosphodiesterase-3 by quazinone has partially blocked the effect of CO. Utilizing immuno-histochemical methods CO-producing enzyme heme-oxygenase-2 (HO-2) was shown to be expressed in skeletal muscle fibers, mostly in sub-sarcolemmal region, karyolemma and sarcoplasmic reticulum. Zn-protoporphirin-IX, the selective HO-2 blocker, has depressed Ach-release, suggesting the tonic activating effect of endogenous CO on pre-synaptic function. These results suggest that facilitatory effect of CO on Ach-release is mediated by elevation of intracellular cAMP level due to activation of adenylate cyclase and decrease of cAMP breakdown. As such, endogenous skeletal muscle-derived CO mediates tonic retrograde up-regulation of neuro-transmitter release at the frog neuro-muscular junction.


Assuntos
Acetilcolina/metabolismo , Monóxido de Carbono/farmacologia , Junção Neuromuscular/metabolismo , Animais , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Técnicas In Vitro , Músculo Esquelético/metabolismo , Rana ridibunda , Transmissão Sináptica/efeitos dos fármacos
19.
Neurochem Int ; 49(8): 756-63, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16904240

RESUMO

Apart from acetyl-choline (Ach), adenosine-5'-trisphosphate (ATP) is thought to play a role in neuromuscular function, however little information is available on its cellular physiology. As such, effects of ATP and adenosine on contractility of mice diaphragmatic and skeletal muscles (m. extensor digitorum longa-MEDL) have been investigated in in vitro experiments. Application of carbacholine (CCh) in vitro in different concentrations led to pronounced muscle contractions, varying from 9.15+/-4.76 to 513.13+/-15.4 mg and from 44.65+/-5.01 to 101.46+/-9.11 mg for diaphragm and MEDL, respectively. Two hundred micromolars of CCh in both muscles caused the contraction with the 65% (diaphragm) to 75% (MEDL) of maximal contraction force-this concentration was thus used in further experiments. It was found that application of ATP (100 microM) increased the force of diaphragmatic contraction caused by CCh (200 microM) from 335.2+/-51.4 mg (n=21) in controls to 426.5+/-47.8 mg (n=10; P<0.05), but decreased the contractions of MEDL of CCh from 76.6+/-6.5mg (n=26) in control to 40.2+/-9.0mg (n=8; P<0.05). Application of adenosine (100 microM) had no effect on CCh-induced contractions of these muscles. Resting membrane potential (MP) measurements using sharp electrodes were done at 10, 20 and 30 min after the application of ATP and adenosine. Diaphragm showed depolarization from 75+/-0.6 down to 63.2+/-1.05, 57.2+/-0.96 and 53.6+/-1.1 mV after 10, 20 and 30 min of exposition, respectively (20 fibers from 4 muscles each, P<0.05 in all three cases). Adenosine showed no effect on diaphragmatic MP. Both agents were ineffective in case of MEDL. The effects of ATP in both tissues were abolished by suramin (100 microM), a P2-receptor antagonist, and chelerythrin (50 microM), a specific protein-kinase C (PKC) inhibitor, but were not affected by 1H-[1,2,4]-oxadiazolo-[4,3-alpha]-quinoxalin-1-one (ODQ, 1 microM), a guanylyl-cyclase inhibitor, or by adenosine-3,5-monophosphothioate (Rp-cAMP, 1 microM), a protein-kinase A (PKA) inhibitor. Besides the action on contractile activity, ATP (100 microM) led to a significant (P<0.001) depolarization of diaphragm muscle fibers from 74.5+/-2.3 down to 64+/-2.1, 58.2+/-2.2 and 54.3+/-2.4 mV after 10, 20 and 30 min of incubation, respectively. Incubation of MEDL with the same ATP concentration showed no significant change of MP. Denervation of the muscles for 28 days led to a decrease of CCh-induced contractions of diaphragm down to 171.1+/-34.5mg (n=11, P<0.05), but increased the contractile force of MEDL up to 723.9+/-82.3mg (n=9, P<0.01). Application of ATP elevated the contractility of denervated diaphragm caused by CCh up to normal values (311.1+/-79.7 mg, n=6, P>0.05 versus control), but did not significantly affect of contractility of MEDL, which became 848.1+/-62.7 mg (n=6). These results show that the effects of ATP on both diaphragmatic and skeletal muscles are mediated through P2Y receptors coupled to chelerytrin-sensitive protein-kinase C.


Assuntos
Trifosfato de Adenosina/farmacologia , Diafragma/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Carbacol/farmacologia , Denervação , Diafragma/inervação , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Músculo Esquelético/inervação
20.
Neurochem Res ; 31(8): 1055-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16871441

RESUMO

High-frequency synaptic activity can cause facilitation of transmitter release due to accumulation of "residual Ca(2+)" at the nerve terminal. However, the mechanism of this phenomenon is still under debate. Here we show that, using extracellular recording from frog cutaneous pectoris muscle, paired-pulse facilitation (PPF) at the frog neuro-muscular junction decays in two or three-exponential manner depending upon the extracellular Ca(2+) concentration ([Ca(2+)](e)). First, second and "early" PPF components are analyzed and described in this study. Considering the dependence of PPF on [Ca(2+)](e), existence of several specific high-affinity intra-terminal Ca(2+)-binding sites that underlie the facilitation of transmitter release at the frog neuro-muscular junction is proposed.


Assuntos
Cálcio/metabolismo , Junção Neuromuscular/fisiologia , Neurotransmissores/metabolismo , Transmissão Sináptica/fisiologia , Animais , Estimulação Elétrica , Eletrofisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Rana ridibunda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA