Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 34(2): 273-290, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414417

RESUMO

BACKGROUND: About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. METHODS: To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. RESULTS: We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. CONCLUSIONS: Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Humanos , Camundongos , Animais , Cães , Anormalidades Urogenitais/genética , Rim/anormalidades , Sistema Urinário/anormalidades , Integrinas/metabolismo , Proteínas Mutantes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
2.
Adv Sci (Weinh) ; 8(2): 2003380, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511022

RESUMO

Morphogenesis is a tightly-regulated developmental process by which tissues acquire the morphology that is critical to their function. For example, epithelial cells exhibit different 2D and 3D morphologies, induced by distinct biochemical and biophysical cues from their environment. In this work, novel hybrid matrices composed of a Matrigel and synthetic oligo(ethylene glycol)-grafted polyisocyanides (PICs) hydrogels are used to form a highly tailorable environment. Through precise control of the stiffness and cell-matrix interactions, while keeping other properties constant, a broad range of morphologies induced in Madin-Darby Canine Kidney (MDCK) cells is observed. At relatively low matrix stiffness, a large morphological shift from round hollow cysts to 2D monolayers is observed, without concomitant translocation of the mechanotransduction protein Yes-associated protein (YAP). At higher stiffness levels and enhanced cell-matrix interactions, tuned by controlling the adhesive peptide density on PIC, the hybrid hydrogels induce a flattened cell morphology with simultaneous YAP translocation, suggesting activation. In 3D cultures, the latter matrices lead to the formation of tubular structures. Thus, mixed synthetic and natural gels, such as the hybrids presented here, are ideal platforms to dissect how external physical factors can be used to regulate morphogenesis in MDCK model system, and in the future, in more complex environments.

3.
Adv Sci (Weinh) ; 7(18): 2001797, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999851

RESUMO

In the last decade, organoid technology has developed as a primary research tool in basic biological and clinical research. The reliance on poorly defined animal-derived extracellular matrix, however, severely limits its application in regenerative and translational medicine. Here, a well-defined, synthetic biomimetic matrix based on polyisocyanide (PIC) hydrogels that support efficient and reproducible formation of mammary gland organoids (MGOs) in vitro is presented. Only decorated with the adhesive peptide RGD for cell binding, PIC hydrogels allow MGO formation from mammary fragments or from purified single mammary epithelial cells. The cystic organoids maintain their capacity to branch for over two months, which is a fundamental and complex feature during mammary gland development. It is found that small variations in the 3D matrix give rise to large changes in the MGO: the ratio of the main cell types in the MGO is controlled by the cell-gel interactions via the cell binding peptide density, whereas gel stiffness controls colony formation efficiency, which is indicative of the progenitor density. Simple hydrogel modifications will allow for future introduction and customization of new biophysical and biochemical parameters, making the PIC platform an ideal matrix for in depth studies into organ development and for application in disease models.

4.
Mol Biol Cell ; 22(12): 2031-41, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21508319

RESUMO

Classic cadherins are important regulators of tissue morphogenesis. The predominant cadherin in epithelial cells, E-cadherin, has been extensively studied because of its critical role in normal epithelial development and carcinogenesis. Epithelial cells may also coexpress other cadherins, but their roles are less clear. The Madin Darby canine kidney (MDCK) cell line has been a popular mammalian model to investigate the role of E-cadherin in epithelial polarization and tubulogenesis. However, MDCK cells also express relatively high levels of cadherin-6, and it is unclear whether the functions of this cadherin are redundant to those of E-cadherin. We investigate the specific roles of both cadherins using a knockdown approach. Although we find that both cadherins are able to form adherens junctions at the basolateral surface, we show that they have specific and mutually exclusive roles in epithelial morphogenesis. Specifically, we find that cadherin-6 functions as an inhibitor of tubulogenesis, whereas E-cadherin is required for lumen formation. Ablation of cadherin-6 leads to the spontaneous formation of tubules, which depends on increased phosphoinositide 3-kinase (PI3K) activity. In contrast, loss of E-cadherin inhibits lumen formation by a mechanism independent of PI3K.


Assuntos
Caderinas/metabolismo , Túbulos Renais/embriologia , Rim/embriologia , Junções Aderentes/metabolismo , Animais , Caderinas/genética , Caderinas/imunologia , Adesão Celular , Agregação Celular , Diferenciação Celular , Linhagem Celular , Polaridade Celular , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Rim/citologia , Rim/metabolismo , Túbulos Renais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA
5.
J Biol Chem ; 286(12): 10834-46, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21278252

RESUMO

To generate and maintain epithelial cell polarity, specific sorting of proteins into vesicles destined for the apical and basolateral domain is required. Syntaxin 3 and 4 are apical and basolateral SNARE proteins important for the specificity of vesicle fusion at the apical and basolateral plasma membrane domains, respectively, but how these proteins are specifically targeted to these domains themselves is unclear. Munc18/SM proteins are potential regulators of this process. Like syntaxins, they are crucial for exocytosis and vesicle fusion. However, how munc18c and syntaxin 4 regulate the function of each other is unclear. Here, we investigated the requirement of syntaxin 4 in the delivery of basolateral membrane and secretory proteins, the basolateral targeting of syntaxin 4, and the role of munc18c in this targeting. Depletion of syntaxin 4 resulted in significant reduction of basolateral targeting, suggesting no compensation by other syntaxin forms. Mutational analysis identified amino acids Leu-25 and to a lesser extent Val-26 as essential for correct localization of syntaxin 4. Recently, it was shown that the N-terminal peptide of syntaxin 4 is involved in binding to munc18c. A mutation in this region that affects munc18c binding shows that munc18c binding is required for stabilization of syntaxin 4 at the plasma membrane but not for its correct targeting. We conclude that the N terminus serves two functions in membrane targeting. First, it harbors the sorting motif, which targets syntaxin 4 basolaterally in a munc18c-independent manner and second, it allows for munc18c binding, which stabilizes the protein in a munc18c-dependent manner.


Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Animais , Membrana Celular/genética , Cães , Proteínas Munc18/genética , Mutação de Sentido Incorreto , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Estabilidade Proteica , Transporte Proteico/fisiologia , Proteínas Qa-SNARE/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
6.
Mol Cell Biol ; 30(8): 1971-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20154149

RESUMO

It is crucial for organ homeostasis that epithelia have effective mechanisms to restrict motility and cell proliferation in order to maintain tissue architecture. On the other hand, epithelial cells need to rapidly and transiently acquire a more mesenchymal phenotype, with high levels of cell motility and proliferation, in order to repair epithelia upon injury. Cross talk between cell-cell and cell-matrix signaling is crucial for regulating these transitions. The Pak1-betaPIX-GIT complex is an effector complex downstream of the small GTPase Rac1. We previously showed that translocation of this complex from cell-matrix to cell-cell adhesion sites was required for the establishment of contact inhibition of proliferation. In this study, we provide evidence that this translocation depends on cadherin function. Cadherins do not recruit the complex by direct interaction. Rather, we found that inhibition of the normal function of cadherin or Pak1 leads to defects in focal adhesion turnover and to increased signaling by phosphatidylinositol 3-kinase. We propose that cadherins are involved in regulation of contact inhibition by controlling the function of the Pak1-betaPIX-GIT complex at focal contacts.


Assuntos
Caderinas/metabolismo , Proliferação de Células , Inibição de Contato/fisiologia , Matriz Extracelular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais/fisiologia , Quinases Ativadas por p21/metabolismo , Junções Aderentes/metabolismo , Animais , Caderinas/genética , Linhagem Celular , Cromonas/metabolismo , Cães , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Quinases Ativadas por p21/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
EMBO Rep ; 9(9): 923-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18660750

RESUMO

In multicellular epithelial tissues, the orientation of polarity of each cell must be coordinated. Previously, we reported that for Madin-Darby canine kidney cells in three-dimensional collagen gel culture, blockade of beta1-integrin by the AIIB2 antibody or expression of dominant-negative Rac1N17 led to an inversion of polarity, such that the apical surfaces of the cells were misorientated towards the extracellular matrix. Here, we show that this process results from the activation of RhoA. Knockdown of RhoA by short hairpin RNA reverses the inverted orientation of polarity, resulting in normal cysts. Inhibition of RhoA downstream effectors, Rho kinase (ROCK I) and myosin II, has similar effects. We conclude that the RhoA-ROCK I-myosin II pathway controls the inversion of orientation of epithelial polarity caused by AIIB2 or Rac1N17. These results might be relevant to the hyperactivation of RhoA and disruption of normal polarity frequently observed in human epithelial cancers.


Assuntos
Células Epiteliais/metabolismo , Miosina Tipo II/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Western Blotting , Linhagem Celular , Polaridade Celular , Células Epiteliais/citologia , Humanos , Miosina Tipo II/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/genética
8.
Methods Enzymol ; 406: 676-91, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16472697

RESUMO

Rho GTPases are critical regulators of epithelial morphogenesis. A powerful means to investigate their function is three-dimensional (3D) cell culture, which mimics the architecture of epithelia in vivo. However, the nature of 3D culture requires specialized techniques for morphological and biochemical analyses. Here, we describe protocols for 3D culture studies with Madin-Darby Canine Kidney (MDCK) epithelial cells: establishing cultures, immunostaining, and expressing, detecting, and assaying Rho proteins. These protocols enable the regulation of epithelial morphogenesis to be explored at a detailed molecular level.


Assuntos
Células Epiteliais/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Técnicas de Cultura de Células , Células Cultivadas , Colágeno Tipo I/ultraestrutura , Cistos/patologia , Cães , Ativação Enzimática , Matriz Extracelular/ultraestrutura , Fator de Crescimento de Hepatócito/farmacologia , Coloração e Rotulagem
9.
Mol Biol Cell ; 16(2): 433-45, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15574881

RESUMO

Epithelial cells polarize and orient polarity in response to cell-cell and cell-matrix adhesion. Although there has been much recent progress in understanding the general polarizing machinery of epithelia, it is largely unclear how this machinery is controlled by the extracellular environment. To explore the signals from cell-matrix interactions that control orientation of cell polarity, we have used three-dimensional culture systems in which Madin-Darby canine kidney (MDCK) cells form polarized, lumen-containing structures. We show that interaction of collagen I with apical beta1-integrins after collagen overlay of a polarized MDCK monolayer induces activation of Rac1, which is required for collagen overlay-induced tubulocyst formation. Cysts, comprised of a monolayer enclosing a central lumen, form after embedding single cells in collagen. In those cultures, addition of a beta1-integrin function-blocking antibody to the collagen matrix gives rise to cysts that have defects in the organization of laminin into the basement membrane and have inverted polarity. Normal polarity is restored by either expression of activated Rac1, or the inclusion of excess laminin-1 (LN-1). Together, our results suggest a signaling pathway in which the activation of beta1-integrins orients the apical pole of polarized cysts via a mechanism that requires Rac1 activation and laminin organization into the basement membrane.


Assuntos
Polaridade Celular , Células Epiteliais/fisiologia , Integrinas/metabolismo , Laminina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular , Colágeno Tipo I/metabolismo , Cães , Ativação Enzimática , Células Epiteliais/ultraestrutura
10.
EMBO J ; 22(16): 4155-65, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12912914

RESUMO

Wound healing in epithelia requires coordinated cell migration and proliferation regulated by signaling mechanisms that are poorly understood. Here we show that epithelial cells expressing constitutively active or kinase-dead mutants of the Rac/Cdc42 effector Pak1 fail to undergo growth arrest upon wound closure. Strikingly, this phenotype is only observed when the Pak1 kinase mutants are expressed in cells possessing a free lateral surface, i.e. one that is not engaged in contact with neighboring cells. The Pak1 kinase mutants perturb contact inhibition by a mechanism that depends on the Pak-interacting Rac-GEF PIX. In control cells, endogenous activated Pak and PIX translocate from focal complexes to cell-cell contacts during wound closure. This process is abrogated in cells expressing Pak1 kinase mutants. In contrast, Pak1 mutants rendered defective in PIX binding do not impede translocation of activated Pak and PIX, and exhibit normal wound healing. Thus, recruitment of activated Pak and PIX to cell-cell contacts is pivotal to transduction of growth-inhibitory signals from neighboring cells in epithelial wound healing.


Assuntos
Proteínas de Ciclo Celular/genética , Células Epiteliais/citologia , Regulação Enzimológica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular , Inibição de Contato , Cães , Ativação Enzimática , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Rim/citologia , Cinética , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Cicatrização , Quinases Ativadas por p21
11.
Trends Cell Biol ; 13(4): 169-76, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12667754

RESUMO

The most fundamental type of organization of cells in metazoa is that of epithelia, which comprise sheets of adherent cells that divide the organism into topologically and physiologically distinct spaces. Some epithelial cells cover the outside of the organism; these often form multiple layers, such as in skin. Other epithelial cells form monolayers that line internal organs, and yet others form tubes that infiltrate the whole organism, carrying liquids and gases containing nutrients, waste and other materials. These tubes can form elaborate networks in the lung, kidney, reproductive passages and vasculature tree, as well as the many glands branching from the digestive system such as the liver, pancreas and salivary glands. In vitro systems can be used to study tube formation and might help to define common principles underlying the formation of diverse types of tubular organ.


Assuntos
Padronização Corporal/fisiologia , Diferenciação Celular/fisiologia , Polaridade Celular/fisiologia , Células Epiteliais/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/citologia , Epitélio/embriologia , Epitélio/fisiologia , Humanos , Túbulos Renais/citologia , Túbulos Renais/embriologia , Modelos Biológicos
12.
Mol Biol Cell ; 14(2): 748-63, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12589067

RESUMO

Epithelial cells form monolayers of polarized cells with apical and basolateral surfaces. Madin-Darby canine kidney epithelial cells transiently lose their apico-basolateral polarity and become motile by treatment with hepatocyte growth factor (HGF), which causes the monolayer to remodel into tubules. HGF induces cells to produce basolateral extensions. Cells then migrate out of the monolayer to produce chains of cells, which go on to form tubules. Herein, we have analyzed the molecular mechanisms underlying the production of extensions and chains. We find that cells switch from an apico-basolateral polarization in the extension stage to a migratory cell polarization when in chains. Extension formation requires phosphatidyl-inositol 3-kinase activity, whereas Rho kinase controls their number and length. Microtubule dynamics and cell division are required for the formation of chains, but not for extension formation. Cells in the monolayer divide with their spindle axis parallel to the monolayer. HGF causes the spindle axis to undergo a variable "seesaw" motion, so that a daughter cells can apparently leave the monolayer to initiate a chain. Our results demonstrate the power of direct observation in investigating how individual cell behaviors, such as polarization, movement, and division are coordinated in the very complex process of producing multicellular structures.


Assuntos
Células Epiteliais/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Actinas/metabolismo , Animais , Western Blotting , Divisão Celular , Linhagem Celular , Movimento Celular , Células Cultivadas , Citoesqueleto/metabolismo , Cães , Proteínas de Fluorescência Verde , Processamento de Imagem Assistida por Computador , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mitomicina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo , Transfecção , Tubulina (Proteína)/metabolismo , Quinases Associadas a rho
13.
Nat Rev Mol Cell Biol ; 3(7): 531-7, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12094219

RESUMO

How do individual cells organize into multicellular tissues? Here, we propose that the morphogenetic behaviour of epithelial cells is guided by two distinct elements: an intrinsic differentiation programme that drives formation of a lumen-enclosing monolayer, and a growth factor-induced, transient de-differentiation that allows this monolayer to be remodelled.


Assuntos
Células Epiteliais/citologia , Animais , Comunicação Celular , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Divisão Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA