Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 65(5): 1887-96, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15753387

RESUMO

Apoptotic evasion is a hallmark of cancer and its resistance to chemotherapeutic drugs. Identification of cellular proteins that mediate apoptotic programs is a critical step toward the development of therapeutics aimed at overcoming apoptosis resistance. We developed an innovative high-throughput screen to identify proteins that modulate Fas ligand-mediated apoptosis using fluorophore-assisted light inactivation (HTS-FALIpop). The FALI protein knockdown strategy was coupled to a caspase activity assay with the ability to detect both proapoptotic and antiapoptotic surface molecules expressed by HT-1080 human fibrosarcoma cells. FALI of the Fas receptor (Fas/CD95) using a fluorescein-conjugated anti-Fas antibody abrogated Fas ligand-mediated caspase activation. Ninety-six single-chain variable fragment antibodies (scFv), selected for binding to the surface of HT-1080 cells, were screened by HTS-FALIpop. Three of the scFvs caused decreases in caspase induction after FALI of their protein targets. One of the targets of these positive scFvs was identified as CD44 and was validated by performing FALI using a CD44-specific monoclonal antibody, which resulted in similar protection from Fas apoptosis. CD44-targeted FALI was antiapoptotic in multiple human cancer cell lines, including both Fas signaling type I and II cells, and was also protective against other ligands of the tumor necrosis factor death receptor family. FALI of CD44 inhibited formation and activation of the death-inducing signaling complex, suggesting that CD44 regulates Fas at the cell surface. This mechanism of death receptor regulation represents a novel means of apoptosis modulation that could be exploited by pharmacologic agents.


Assuntos
Apoptose , Receptores de Hialuronatos/metabolismo , Fragmentos de Imunoglobulinas/imunologia , Proteômica , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor fas/metabolismo , Animais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Caspases/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Ativação Enzimática , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Humanos , Receptores de Hialuronatos/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Espectrometria de Massas , Camundongos , Células Tumorais Cultivadas , Receptor fas/genética
2.
BMC Cancer ; 4: 73, 2004 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-15471548

RESUMO

BACKGROUND: Invasion is an important early step of cancer metastasis that is not well understood. Developing therapeutics to limit metastasis requires the identification and validation of candidate proteins necessary for invasion and migration. METHODS: We developed a functional proteomic screen to identify mediators of tumor cell invasion. This screen couples Fluorophore Assisted Light Inactivation (FALI) to a scFv antibody library to systematically inactivate surface proteins expressed by human fibrosarcoma cells followed by a high-throughput assessment of transwell invasion. RESULTS: Using this screen, we have identified CD155 (the poliovirus receptor) as a mediator of tumor cell invasion through its role in migration. Knockdown of CD155 by FALI or by RNAi resulted in a significant decrease in transwell migration of HT1080 fibrosarcoma cells towards a serum chemoattractant. CD155 was found to be highly expressed in multiple cancer cell lines and primary tumors including glioblastoma (GBM). Knockdown of CD155 also decreased migration of U87MG GBM cells. CD155 is recruited to the leading edge of migrating cells where it colocalizes with actin and alphav-integrin, known mediators of motility and adhesion. Knockdown of CD155 also altered cellular morphology, resulting in cells that were larger and more elongated than controls when plated on a Matrigel substrate. CONCLUSION: These results implicate a role for CD155 in mediating tumor cell invasion and migration and suggest that CD155 may contribute to tumorigenesis.


Assuntos
Movimento Celular , Proteínas de Membrana/análise , Invasividade Neoplásica , Proteínas de Neoplasias/análise , Receptores Virais/análise , Linhagem Celular Tumoral , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Fibrossarcoma/secundário , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/secundário , Humanos , Imunoprecipitação/métodos , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Proteômica/métodos , Receptores Virais/fisiologia
3.
Nat Cell Biol ; 6(6): 507-14, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15146192

RESUMO

Tumour cell invasiveness is crucial for cancer metastasis and is not yet understood. Here we describe two functional screens for proteins required for the invasion of fibrosarcoma cells that identified the molecular chaperone heat shock protein 90 (hsp90). The hsp90 alpha isoform, but not hsp90 beta, is expressed extracellularly where it interacts with the matrix metalloproteinase 2 (MMP2). Inhibition of extracellular hsp90 alpha decreases both MMP2 activity and invasiveness. This role for extracellular hsp90 alpha in MMP2 activation indicates that cell-impermeant anti-hsp90 drugs might decrease invasiveness without the concerns inherent in inhibiting intracellular hsp90.


Assuntos
Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Fibrossarcoma/fisiopatologia , Proteínas de Choque Térmico HSP90/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica/fisiopatologia , Membrana Basal/metabolismo , Sítios de Ligação/fisiologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Fibrossarcoma/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Ligação Proteica/fisiologia , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA