Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 9583-9596, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38538061

RESUMO

Primases are crucial enzymes for DNA replication, as they synthesize a short primer required for initiating DNA replication. We herein present time-resolved nuclear magnetic resonance (NMR) spectroscopy in solution and in the solid state to study the initial dinucleotide formation reaction of archaeal pRN1 primase. Our findings show that the helix-bundle domain (HBD) of pRN1 primase prepares the two substrates and then hands them over to the catalytic domain to initiate the reaction. By using nucleotide triphosphate analogues, the reaction is substantially slowed down, allowing us to study the initial dinucleotide formation in real time. We show that the sedimented protein-DNA complex remains active in the solid-state NMR rotor and that time-resolved 31P-detected cross-polarization experiments allow monitoring the kinetics of dinucleotide formation. The kinetics in the sedimented protein sample are comparable to those determined by solution-state NMR. Protein conformational changes during primer synthesis are observed in time-resolved 1H-detected experiments at fast magic-angle spinning frequencies (100 kHz). A significant number of spectral changes cluster in the HBD pointing to the importance of the HBD for positioning the nucleotides and the dinucleotide.


Assuntos
Carcinoma Papilar , Carcinoma de Células Renais , DNA Primase , Replicação do DNA , Neoplasias da Glândula Tireoide , DNA Primase/química , Nucleotídeos , Espectroscopia de Ressonância Magnética
2.
Nat Chem Biol ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467846

RESUMO

Phase transitions are important to understand cell dynamics, and the maturation of liquid droplets is relevant to neurodegenerative disorders. We combined NMR and Raman spectroscopies with microscopy to follow, over a period of days to months, droplet maturation of the protein fused in sarcoma (FUS). Our study reveals that the surface of the droplets plays a critical role in this process, while RNA binding prevents it. The maturation kinetics are faster in an agarose-stabilized biphasic sample compared with a monophasic condensed sample, owing to the larger surface-to-volume ratio. In addition, Raman spectroscopy reports structural differences upon maturation between the inside and the surface of droplets, which is comprised of ß-sheet content, as revealed by solid-state NMR. In agreement with these observations, a solid crust-like shell is observed at the surface using microaspiration. Ultimately, matured droplets were converted into fibrils involving the prion-like domain as well as the first RGG motif.

3.
J Am Chem Soc ; 145(40): 21915-21924, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782045

RESUMO

Interactions between RNA and proteins are the cornerstone of many important biological processes from transcription and translation to gene regulation, yet little is known about the ancient origin of said interactions. We hypothesized that peptide amyloids played a role in the origin of life and that their repetitive structure lends itself to building interfaces with other polymers through avidity. Here, we report that short RNA with a minimum length of three nucleotides binds in a sequence-dependent manner to peptide amyloids. The 3'-5' linked RNA backbone appears to be well-suited to support these interactions, with the phosphodiester backbone and nucleobases both contributing to the affinity. Sequence-specific RNA-peptide interactions of the kind identified here may provide a path to understanding one of the great mysteries rooted in the origin of life: the origin of the genetic code.


Assuntos
Nucleotídeos , RNA , RNA/química , Nucleotídeos/genética , Códon , Amiloide/genética , Proteínas Amiloidogênicas , Peptídeos/genética
4.
Chemistry ; 29(50): e202301159, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310801

RESUMO

Biochemical reactions occurring in highly crowded cellular environments require different means of control to ensure productivity and specificity. Compartmentalization of reagents by liquid-liquid phase separation is one of these means. However, extremely high local protein concentrations of up to 400 mg/ml can result in pathological aggregation into fibrillar amyloid structures, a phenomenon that has been linked to various neurodegenerative diseases. Despite its relevance, the process of liquid-to-solid transition inside condensates is still not well understood at the molecular level. We thus herein use small peptide derivatives that can undergo both liquid-liquid and subsequent liquid-to-solid phase transition as model systems to study both processes. Using solid-state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM), we compare the structure of condensed states of leucine, tryptophan and phenylalanine containing derivatives, distinguishing between liquid-like condensates, amorphous aggregates and fibrils, respectively. A structural model for the fibrils formed by the phenylalanine derivative was obtained by an NMR-based structure calculation. The fibrils are stabilised by hydrogen bonds and side-chain π-π interactions, which are likely much less pronounced or absent in the liquid and amorphous state. Such noncovalent interactions are equally important for the liquid-to-solid transition of proteins, particularly those related to neurodegenerative diseases.


Assuntos
Amiloide , Peptídeos , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Modelos Moleculares , Espectroscopia de Ressonância Magnética , Amiloide/química , Fenilalanina
5.
Phys Chem Chem Phys ; 24(13): 7768-7778, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293933

RESUMO

Proton-detected solid-state NMR enables atomic-level insight in solid-state reactions, for instance in heterogeneous catalysis, which is fundamental for deciphering chemical reaction mechanisms. We herein introduce a phosphorus-31 radiofrequency channel in proton-detected solid-state NMR at fast magic-angle spinning. We demonstrate our approach using solid-state 1H/31P and 1H/13C correlation experiments at high magnetic fields (850 and 1200 MHz) and high spinning frequencies (100 kHz) to characterize four selected PH-containing compounds from the chemistry of phosphane-borane frustrated Lewis pairs. Frustrated Lewis pairs have gained high interest in the past years, particularly due to their capabilities of activating and binding small molecules, such as di-hydrogen, however, their analytical characterization especially in the solid state is still limited. Our approach reveals proton-phosphorus connectivities providing important information on spatial proximity and chemical bonding within such compounds. We also identify protons that show strongly different chemical-shift values compared to the solution state, which we attribute to intermolecular ring-current effects. The most challenging example presented herein is a cyclotrimeric frustrate Lewis pair-associate comprising three crystallographically distinct phosphonium entities that are unambiguously distinguished by our approach. Such 31P spin-filtered proton-detected NMR can be easily extended to other material classes and can strongly impact the structural characterization of reaction products of hydrogen-activated phosphane/borane FLPs, heterogeneous catalysts and solid-state reactions in general.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Fósforo
6.
J Magn Reson ; 332: 107075, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34597956

RESUMO

Labeling of biomolecules with a paramagnetic probe for nuclear magnetic resonance (NMR) spectroscopy enables determining long-range distance restraints, which are otherwise not accessible by classically used dipolar coupling-based NMR approaches. Distance restraints derived from paramagnetic relaxation enhancements (PREs) can facilitate the structure determination of large proteins and protein complexes. We herein present the site-directed labeling of the large oligomeric bacterial DnaB helicase from Helicobacter pylori with cysteine-reactive maleimide tags carrying either a nitroxide radical or a lanthanide ion. The success of the labeling reaction was followed by quantitative continuous-wave electron paramagnetic resonance (EPR) experiments performed on the nitroxide-labeled protein. PREs were extracted site-specifically from 2D and 3D solid-state NMR spectra. A good agreement with predicted PRE values, derived by computational modeling of nitroxide and Gd3+ tags in the low-resolution DnaB crystal structure, was found. Comparison of experimental PREs and model-predicted spin label-nucleus distances indicated that the size of the "blind sphere" around the paramagnetic center, in which NMR resonances are not detected, is slightly larger for Gd3+ (∼14 Å) than for nitroxide (∼11 Å) in 13C-detected 2D spectra of DnaB. We also present Gd3+-Gd3+ dipolar electron-electron resonance EPR experiments on DnaB supporting the conclusion that DnaB was present as a hexameric assembly.


Assuntos
Proteínas , DnaB Helicases , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Marcadores de Spin
7.
Nat Commun ; 12(1): 5293, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489448

RESUMO

The ATP hydrolysis transition state of motor proteins is a weakly populated protein state that can be stabilized and investigated by replacing ATP with chemical mimics. We present atomic-level structural and dynamic insights on a state created by ADP aluminum fluoride binding to the bacterial DnaB helicase from Helicobacter pylori. We determined the positioning of the metal ion cofactor within the active site using electron paramagnetic resonance, and identified the protein protons coordinating to the phosphate groups of ADP and DNA using proton-detected 31P,1H solid-state nuclear magnetic resonance spectroscopy at fast magic-angle spinning > 100 kHz, as well as temperature-dependent proton chemical-shift values to prove their engagements in hydrogen bonds. 19F and 27Al MAS NMR spectra reveal a highly mobile, fast-rotating aluminum fluoride unit pointing to the capture of a late ATP hydrolysis transition state in which the phosphoryl unit is already detached from the arginine and lysine fingers.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , DNA Bacteriano/química , DnaB Helicases/química , Helicobacter pylori/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Compostos de Alumínio/química , Compostos de Alumínio/metabolismo , Arginina/química , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DnaB Helicases/genética , DnaB Helicases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fluoretos/química , Fluoretos/metabolismo , Expressão Gênica , Helicobacter pylori/genética , Hidrólise , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
8.
J Biomol NMR ; 75(6-7): 255-272, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34170475

RESUMO

Progress in NMR in general and in biomolecular applications in particular is driven by increasing magnetic-field strengths leading to improved resolution and sensitivity of the NMR spectra. Recently, persistent superconducting magnets at a magnetic field strength (magnetic induction) of 28.2 T corresponding to 1200 MHz proton resonance frequency became commercially available. We present here a collection of high-field NMR spectra of a variety of proteins, including molecular machines, membrane proteins, viral capsids, fibrils and large molecular assemblies. We show this large panel in order to provide an overview over a range of representative systems under study, rather than a single best performing model system. We discuss both carbon-13 and proton-detected experiments, and show that in 13C spectra substantially higher numbers of peaks can be resolved compared to 850 MHz while for 1H spectra the most impressive increase in resolution is observed for aliphatic side-chain resonances.


Assuntos
Capsídeo/química , Isótopos de Carbono , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Prótons
9.
Chemistry ; 27(28): 7745-7755, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822417

RESUMO

Paramagnetic metal ions can be inserted into ATP-fueled motor proteins by exchanging the diamagnetic Mg2+ cofactor with Mn2+ or Co2+ . Then, paramagnetic relaxation enhancement (PRE) or pseudo-contact shifts (PCSs) can be measured to report on the localization of the metal ion within the protein. We determine the metal position in the oligomeric bacterial DnaB helicase from Helicobacter pylori complexed with the transition-state ATP-analogue ADP:AlF4 - and single-stranded DNA using solid-state NMR and a structure-calculation protocol employing CYANA. We discuss and compare the use of Mn2+ and Co2+ in localizing the ATP cofactor in large oligomeric protein assemblies. 31 P PCSs induced in the Co2+ -containing sample are then used to localize the DNA phosphate groups on the Co2+ PCS tensor surface enabling structural insights into DNA binding to the DnaB helicase.


Assuntos
DNA de Cadeia Simples , Helicobacter pylori , Proteínas de Bactérias , DnaB Helicases/metabolismo , Íons , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA